Skip to main content

Ultra-wideband compact millimeter-wave printed ridge gap waveguide directional couplers for 5G applications

Research Authors
Mohamed Mamdouh M Ali, Osama M Haraz, Islam Afifi, Abdel-Razik Sebak, Tayeb A Denidni
Research Member
Research Department
Research Date
Research Year
2022
Research Journal
IEEE Access
Research Publisher
ieee
Research Abstract

A compact ultra-wideband printed ridge gap waveguide directional couplers for millimeter-wave applications are presented in this paper. A multi-layer coupling technique between two resonant patches is adopted to achieve a wider operating bandwidth with better amplitude and phase balance compared to single-layer technology. For this purpose, a systematic design procedure is deployed to achieve several coupling values in the range of 3–10 dB over a wide frequency bandwidth centered at 30 GHz. A 3-dB hybrid coupler is fabricated and measured, where a bandwidth of 12 GHz (about 38% fractional bandwidth) from 25 GHz to 37 GHz is achieved. In addition, the phase balance is 90o ± 5o over 38% fractional bandwidth with an amplitude balance of 3.4 ± 0.5 dB over a 26.5% centered at 30 GHz. The proposed couplers with superior characteristics such as compactness, low loss, and low dispersion are considered a good candidate for millimeter-wave applications such as the fifth-generation (5G) wireless communications.