Skip to main content

Assessment of the Toxicity of Aluminum Oxide and Its Nanoparticles in the Bone Marrow and Liver of Male Mice: Ameliorative Efficacy of Curcumin Nanoparticles

Research Authors
Alshaimaa A. I. Alghriany, Hossam EL-din M. Omar, Amera M. Mahmoud, and Mona M. Atia
Research Abstract

The potential influence of nanoparticles (NPs) on the liver and bone marrow has received attention. The aim of this work was to evaluate the effect of nanocurcumin on the oxidative stress, apoptosis, and toxicity induced by Al2O3 and its NPs. The experimental animals (n = 72 mice) were divided into the following groups: group I, as a control; groups II and III, as aluminum oxide and its NPs (6 mg/kg); group IV, as aluminum oxide + nanocurcumin (Al2O3 + N-Cur, 20 mg/ kg); and group V, as aluminum oxide NPs + nanocurcumin (Al2O3-NP + N.Cur., 20 mg/kg). Al2O3 and its NP groups significantly increased p53, Nrf2 levels, and the white blood cell count. They also decreased the Hsp70 level, antitrypsin, immunoglobulin G, and the red blood cell count. In addition, they significantly decreased the total and differential bone marrow cell counts and the maturation index ratio (MIR). Nanocurcumin (N.Cur.) reverted the previous proteins, blood parameters, total bone marrow cell count, and the MIR as M/E, I/Mg, MMI, I/Me, and EMI to normal. Furthermore, N.Cur. prevented apoptosis and reduced the histopathological score and collagen fiber percentage caused by Al2O3 and its NPs in the liver. Nanotechnology was used to increase the therapeutic efficiency of curcumin against the harmful effects of oxidative stress associated with Al2O3 NPs.

Research Date
Research Department
Research Journal
ACS Omega
Research Publisher
American Chemical Society
Research Vol
7
Research Website
https://doi.org/10.1021/acsomega.2c00195
Research Year
2022
Research Pages
13841−13852