

Course Specification

Course Specification

1-Basic Information

Title: Recent approaches in design of Pharmaceutical formulationsCode: DIP 061Level :Ph.D.Department of Industrial PharmacyUnit:Lecture: 2hr/weekTutorialPractical:Total:

2- Aims of Course

... Aims of the course are to provide the students with the basic principles, and concepts of recent advances in design of pharmaceutical formulations; such as transdermal systems, liposomes, ophthalmic preparations and intra-utrine drug delivery systems, etc,

3- Intended Learning Outcomes of Course(ILOs)

a- Knowledge and Understanding:

al- Illustrate the basic principles of dosage form design.

a2-Describe the concepts of recent developments in pharmaceutical formulations.

a3-Recognize well to the ethics of scientific research in drug delivery systems.

b- Intellectual Skills:

b1- analyze and evaluate the data obtained from the design of new pharmaceutical formula.

b2-reconstruct and solve the research problems related to dosage form design according to the available data

b3- write and publish the scientific researches in international journals with high impact factor.

c- Professional and practical Skills:

c1-design and write scientific research project.

c2- perform the well designed experiments under laboratory safety conditions.

c3- apply the GMP in laboratories of drug industry, and manage the time efficiency.

d- General and Transferable Skills:

d1- Attend in the scientific meetings and conferences.

d2- Use the data base to serve the enhancement of researches in drug technology.

d3- Do well in scientific team work under various conditions.

Topic	No. of hours	Lecture	Tutorial / Practical
Transdermal drug	4	2	
delivery systems			
Liposomes as drug	4	2	
carriers			
Preformulations	4	2	
aspects in dosage			
form design			
Ophthalmic	2	1	
preparations			
Intrautrine drug	2	1	
delivery			
Osmotic pump	2	1	
drug delivery			
Formulation of	2	1	
mini tablets			

<u>4- Course Contents</u>

<u>5- Teaching and Learning Methods</u>

- 5.1-Computer and data show
- 5.2- Overhead projector.
- 5.3- Group discussion
- 5.4- Scientific trip

6- Teaching and learning methods for disables

...none.....

7- student Assessment

7.1-Reports to assess knowledge and understanding skills..

7.2- Final written exam to assess intellectual, professional and general skills.

7.3- Seminars to assess transferable skills.

D- Student Assessment Schedule					
No.	Assessment	week			
1.	reports	5 and 10			
2.	seminars	15			
3.	Written exam	30			
4.					

b- Student Assessment Schedule

c-Weighting of Assessments

No.	Exam.	Mark	%
1.	Mid-Term Examination		
2.	Final-Term Examination	100	100
3.	Oral Examination		
4.	Practical Examination		
5.	Semester Work		
6-	Other types of assessment		
	Total	100	100%

8- List of References

a-Course Notes

.....

b-Essential Books (Text Books)

- 1-Modern Pharmaceutics
- 2- Pharmaceutics, science of dosage form design, M.Aulton.
- 3- Modern drug delivery systems.

c-Recommended Books

- 1- Remington, Pharmaceutical sciences
- 2- Periodicals,
- 3- Relevant web sites .

Course Coordinator: Prof. Dr. Mahrous Osman Ahmed

Head of Department: Prof .Dr. Sayed Ibrahim Abdel-Rahman

Program Coordinator: Prof. Dr.Ahmed Abu-Taleb and Prof. Dr. Mahrous Osman Ahmed.

University	Assiut	Course Title	Recent Approaches in design of
Faculty Department	Pharmacy Industrial Pharmacy.	Course Code.	

Matrix of the Intended Learning Outcomes (ILOs) of the Course

Торіс	Week	Knowledge and Understanding	Intellectual Skills	Professional and Piratical Skills	General and Transferable Skills
Transdermal drug delivery systems	2	a1, a3, a4	b3, b4, b5, b7	c2, c4,c5, c7	d1,d2, d5
Liposomes as drug carriers	2	a1, a3, a4,	b3, b4, b5, b7	c2, c4,c5, c7	d1,d2, d5
Preformulations aspects in dosage form design	2	a1, a3, a4	b3, b4, b5, b7	c2, c4,c5, c7	d1,d2, d5
Ophthalmic preparations	1	a1, a3, a4	b3, b4, b5, b7	c2, c4,c5, c7	d1,d2, d5
Intrautrine drug delivery	1	a1, a3, a4	b3, b4, b5, b7	c2, c4,c5, c7	d1,d2, d5
Osmotic pump drug delivery	1	a1, a3, a4	b3, b4, b5, b7	c2, c4,c5, c7	d1,d2, d5
Formulation of mini tablets	1	a1, a3, a4	b3, b4, b5, b7	c2, c4,c5, c7	d1,d2, d5

Course Coordinator : **Prof. Dr. Mahrous Osman Ahmed.**

Head of Department : Prof. Dr. Sayed Ibrahim Abdel-Rahman

Course Specification

Course Specification

1-Basic Information

Title: Stability of pharmaceutical formulationsCode: DIP 062Level : Ph.D of pharmaceutical science (Industrial Pharmacy)Department: Industrial pharmacyLecture: 2h/weekTutorial:-Practical:-Total: 2h/week

2- Aims of Course

- 1- Adding new knowledge in the industrial field of drugs.
- 2- Finding solutions for industrial problems during drug manufacturing.
- 3- Gained the ability on scientific dialogue and acceptance of logical criticism.

3- Intended Learning Outcomes of Course(ILOs)

a- Knowledge and Understanding:

al- acquire the basis and theories in the field of drug manufacturing.

a3-define the basis of quality on industrial practice and specific quality of pharmaceutical products.

b- Intellectual Skills:

b2-solve the scientific problems related to drug stability according to the available data.

b3- suggest solutions of different bioequivalence and stability studies.

c- Professional and practical Skills:

C2- perform scientific research project.

C4- treat the available data and results using recent statistical methods.

d- General and Transferable Skills:

d3- collect the information to serve the development of scientific researches of drugs.

d4- work in one research group under different conditions.

<u>4- Course Contents</u>

Topic	No. of	Lecture	Tutorial / Practical
	hours		
Introduction	2	1	
Regulatory aspects	4	2	
FDA and ICH guidelines	8	4	
Photosensitivity	6	3	
Stability versus	6	3	
excipients			
Stability versus	6	3	
processing			
Stabilization of dosage	8	4	
forms			
Accelerated stability	10	5	
testing			
Forced stability testing	10	5	

5- Teaching and Learning Methods

- 4.1-lectures
- 4.2- Data show and power point
- 4.3- Discussion
- 4.4-participation with professionals in order to gain experience.
- 4.5-attendance of scientific meetings and conferences.

<u>6- Teaching and learning methods for disables</u>

...no.....

.....

7- student Assessment

a- Student Assessment methods

6.1-Reports to assess intellectual skills.

6.2- final written exam to assess knowledge and understanding skills

b- Student Assessment Schedule

No.	Assessment	week
1.	Reports	5 and 10
2.	Final exam	30
3.		
4.		

c- Weighting of Assessments

No.	Exam.	Mark	%
1.	Mid-Term Examination		
2.	Final-Term Examination	100	100%
3.	Oral Examination		
4.	Practical Examination		
5.	Semester Work		
6-	Other types of assessment		
	Total	100	100%

8- List of References

a-Course Notes

b- Essential Books (Text Books) Pharmaceutical stability by Conner.

c-Recommended Books Physical pharmacy by Martin

d- Periodicals, Web Sites, etc International journal of pharmaceutics FDA org. stability program.

Course Coordinator: Prof.Dr.Sayed Ibrahim Abdel-Rahman and Dr.Jelan Abdel-Razek

Head of Department: Prof.Dr.Sayed Ibrahim Abdel-Rahman

Program Coordinator: Prof. Dr. Ahmed Abu-Taleb and Prof. Dr. Mahrous Osman Ahmed

University	 Course Title	Stability of pharmaceutical formulations
Faculty	 Course Code.	
Department		

Matrix of the Intended Learning Outcomes (ILOs) of the Course

Торіс	Week	Knowledge and Understanding	Intellectual Skills	Professional and Piratical Skills	General and Transferable Skills
Introduction	1	al			
Regulatory aspects	2,3	a1,a3	b2,b3	C2,c4	d3,d4
FDA and ICH guidelines	4-7	a1,a3	b2,b3	C2,c4	d3,d4
Photosensitivity	8-10	a1,a3	b2,b3	C2,c4	d3,d4
Stability versus excipients	11-13	a1,a3	b2,b3	C2,c4	d3,d4
Stability versus processing	14-16	a1,a3	b2,b3	C2,c4	d3,d4
Stabilization of dosage forms	17-20	a1,a3	b2,b3	C2,c4	d3,d4
Accelerated stability testing	21-25	a1,a3	b2,b3	C2,c4	d3,d4
Forced stability testing	26-30	a1,a3	b2,b3	C2,c4	d3,d4

Course Coordinator

Head of Department