\mathbf{X} 1) Voltage-divider bias is rarely used.
\mathbf{X} 2) h-parameters are never specified on a datasheet.3) In a $\boldsymbol{C} \boldsymbol{E}$ amplifier, the gain can be stabilized by using a swamping resistor.
\square 4) A differential amplifier amplifies the difference of two input signals.
\mathbf{X} 5) A $\boldsymbol{C B}$ amplifier has high current gain.
\mathbf{X} 6) When a transistor is saturated, the collector current is minimum.
\checkmark 7) In an amplifier, a coupling capacitor should appear ideally as a short to the signal.

8) Class $\boldsymbol{A B}$ operation overcomes the problem of crossover distortion.

9) Darlington transistors can be used to increase the input resistance of a class $\boldsymbol{A B}$ amplifier.
\checkmark 10) The $\boldsymbol{J F E T}$ always operates with a reverse-biased gate-to-source pn junction.
\mathbf{X} 11) The drain current $\boldsymbol{I}_{\boldsymbol{D}}$ of a $\boldsymbol{J F E T}$ becomes zero if $\boldsymbol{V}_{\boldsymbol{D} \boldsymbol{S}}$ is at the pinch-off voltage.
12) Forward transconductance is the change in drain voltage for a given change in gate voltage.13) A D-MOSFET has a physical channel and an \boldsymbol{E}-MOSFET has an induced channel.
\checkmark
14) An analog switch is controlled by a digital input.
\mathbf{X} 15) If the feedback resistor in an inverting amplifier opens, the gain becomes zero.
\mathbf{X} 16) The gain of a voltage-follower is very high.
\mathbf{X} 17) An ideal op-amp has very high output impedance.
\checkmark 18) An $\boldsymbol{R} / \mathbf{2} \boldsymbol{R}$ ladder circuit is one form of Digital to Analog Converter.
\checkmark 19) Negative feedback reduces the gain of an op-amp from its open-loop value.
\mathbf{X}
20) When a triangular waveform is applied to a differentiator, a sine wave appears on the output.

Question \#2: (6 Points)

Choose the right answer:

1) A transistor circuit has $V_{C C}=12 \mathrm{~V}, V_{B B}=3 \mathrm{~V}, R_{C}=2 \mathrm{~K} \Omega, R_{B}=50 \mathrm{~K} \Omega$, and $\beta_{D C}=80$, the transistor is

(A) being driven into saturation
(B) being driven into cutoff
(C) being driven in the active region
(D) operating nonlinearly
2) The voltage gain of a common-base amplifier is
(A) very low
(B) very high
C
(C) the same as a CE
(D) the same as a CC

3) The main advantage of a common-collector amplifier is

(A) high current gain
(B) high voltage gain
(C) high input impedance
(D) low input impedance
4) The main advantage of the class-B amplifier over the class-A one is
D
(A) higher current gain
(B) higher voltage gain
(C) higher power gain
(D) higher efficiency
5) The efficiency of a power amplifier is the ratio of the power delivered to the load to
(A) the input signal power
(B) the power dissipated in the last stage
(C) the power from the dc power supply
(D) none of these answers
6) The maximum efficiency of a class A power amplifier is
(A) 25%
(B) 50%
(C) 75%
(D) 78.5%
7) In a JFET, $I_{D S S}$ is
(A) the drain current with the source shorted
(B) the drain current at cutoff
(C) the maximum possible drain current
(D) the midpoint drain current
8) The drain current in a JFET is controlled by
(A) the gate-to-source voltage
(B) the drain-to-source voltage
(C) the gate-to-drain voltage
(D) the gate current
9) For a p-channel JFET, drain current in the constant-current region increases when
(A) the gate-to-source bias voltage decreases
(B) the gate-to-source bias voltage increases
(C) the drain-to-source voltage increases
(D) the drain-to-source voltage decreases
10) The op-amp common-mode gain is
B
(A) very high
(B) very low
(C) always unity
(D) unpredictable
11) In a zero-level detector, the output changes state when the input
C
(A) is positive
(B) is negative
(C) crosses zero
(D) has a zero rate of change
12) In a scaling adder, the input resistors are
C
(A) all the same value
(B) all of different values
(C) each proportional to the weight of its input
(D) related by a factor of two

Model Answer, Page 3 of 5

Question \#3: (10 Points)

a) A certain transistor has $\alpha_{\mathrm{DC}}=0.99$. If the dc base current is $10 \mu \mathrm{~A}$, determine $r_{e}{ }^{\prime}$.

$$
r_{e}^{\prime}=25 \Omega
$$

b) An n-channel JFET has $I_{D S S}=5 \mathrm{~mA}$ and $V_{G S(o f f)}=-8 \mathrm{~V}$. What value of $V_{G S}$ is required to set up a drain current of 2.25 mA .

$$
V_{\mathrm{gs}}=-2.63 \mathrm{~V}
$$

c) A certain class A power amplifier has $V_{C E Q}=12 \mathrm{~V}$ and $I_{C Q}=1 \mathrm{~A}$. Find the maximum signal power output.

$$
P_{\mathrm{L}(\max)}=6 \mathrm{~W}
$$

d) What bias voltage is developed at the base of a transistor if both resistors in a voltage divider are equal and $V_{C C}=10 \mathrm{~V}$?
$V_{B}=5 \mathrm{~V}$
e) An n-channel JFET with voltage-divider bias has a gate voltage of 3V, a drain current of 9 mA , and a source resistance of 800Ω. Calculate $\boldsymbol{V}_{\boldsymbol{G} S}$.

$$
V_{\mathrm{gs}}=-4.2 \mathrm{~V}
$$

f) What is the major difference in construction of the D-MOSFET and the E-MOSFET?

A D-MOSFET has a physical channel; while an E-MOSFET has an induced channel.

g) A common-emitter amplifier is driving a load resistance $R_{L}=10 \mathrm{k} \Omega$. If $R_{C}=2.2 \mathrm{k} \Omega, I_{C Q}=$ $2.5 \mathrm{~mA}, \beta_{a c}=75$ and R_{E} is completely bypassed at the operating frequency. Find the voltage gain.

$$
A_{v}=-180
$$

h) If the gate-to-source voltage in an n-channel D-MOSFET is made more negative, what would be the effect on the drain current?

Decreases.

i) What is the major difference in construction of the MOSFET and the JFET?

> In $M O S F E T$, the gate is isolated from the channel by SiO_{2} layer; while in the $J F E T$, the gate constructs a reverse biased $p n$-junction with the channel.
j) What is the feedback element in an ideal op-amp integrator?

A capacitance.

Model Answer, Page 4 of 5

Question \#4: (5 Points)

The silicon $n p \boldsymbol{n}$ transistors used in the two-stage amplifier shown in Fig. 4 has $\boldsymbol{\beta}_{d c}=\boldsymbol{\beta}_{a c}=100$.
a) Find the operating point and r_{e}^{\prime} for each transistor.
(2 Points)
b) Find the voltage gain and input impedance of each stage. (2 Points)
c) Find the overall voltage gain and input impedance of the amplifier.
(1 Point)

Fig. 4
$I_{\text {CQ1 }}=8.67 \mathrm{~mA}$

$$
r_{\mathrm{e}}{ }_{1}=2.88 \Omega
$$

$$
V_{C E Q 2}=10.58 \mathrm{~V}
$$

$$
r_{\mathrm{e}}{ }^{\prime}{ }_{2}=35.3 \Omega
$$

$$
Z_{\text {in1 } 1}=272 \Omega
$$

$Z_{\text {in2 }}=16.3 \mathrm{~K} \Omega$
$Z_{\text {inT }}=16.3 \mathrm{~K} \Omega$

Fig. 5

Question \#5 (2 Points)

The class $\boldsymbol{A B}$ amplifier in Fig. 5 is operating with a single power supply.
a) Assuming the input peak-to-peak voltage is 10 V ; determine the power delivered to the load resistor and the amplifier efficiency. (1 Point)
b) What is the maximum power that could be delivered to the load resistor?
(1/2 Point)
c) Assume the power supply voltage is raised to 30 V . What is the new maximum power that could be delivered to the load resistor? ($1 / 2$ Point)
a)
$P_{L D}=0.25 \mathrm{~W}$

Efficiency $=\mathbf{3 9 . 3}$ \%
b) $\quad P_{L D(\max)}=1 \mathrm{~W}$
c) $P_{L D(\max)}=$

```
                2.25 W
```


Model Answer, Page 5 of 5

Question \#6: (3 Points)

The E-MOSFET used in the common-source amplifier in Fig. 6 has $\boldsymbol{I}_{\boldsymbol{D}(o n)}=135 \mathrm{~mA}$ at $\boldsymbol{V}_{\boldsymbol{G} S}=4 \mathrm{~V}$ and $\boldsymbol{V}_{\boldsymbol{G S}(t h)}=2.5 \mathrm{~V}$.
a) Determine the operating point $\boldsymbol{V}_{\boldsymbol{G S} \boldsymbol{Q},} \boldsymbol{I}_{\boldsymbol{D} \boldsymbol{Q}}$ and $V_{D S Q}$.
b) Calculate the value of the transconductance $\boldsymbol{g}_{\boldsymbol{m}}$ at the \boldsymbol{Q}-point.
c) Determine the voltage gain and input impedance of the amplifier.

$V_{G S Q}=3 \mathrm{~V}$
$g_{\mathrm{m}}=60 \mathrm{mS}$

$I_{\mathrm{DQ}}=15 \mathrm{~mA}$	
$A_{v}=-21$	$V_{\mathrm{DSQ}}=9 \mathrm{~V}$

Question \#7: (2 Points)

a) Find the output voltage when the indicated input voltages are applied to the scaling adder of Fig. 7.
(1 Point)
b) What is the value of the current through R_{f} ?
\square
$V_{0}=-6 \mathrm{~V}$
(1 Point)

$$
I_{f}=0.6 \mathrm{~mA}
$$

Question \#8: (2 Points)

The voltage waveform of Fig.8a is applied to the non-inverting amplifier of Fig.8b. Sketch the output waveform $\boldsymbol{v}_{\boldsymbol{o}}$.

