Model	Answer,	Page	1 of	Ę
	/	\mathcal{O}		

Assiut University Faculty of Engineering EE0513-ELECTRONIC CIRCUITS First Term Final Exam January 2017

Mechatronics Program

Time: 3 Hours

Attempt all questions, full mark: 40 Points Question #1: (10 Points)

Mark True (✓) or False (x)

- **X** 1) Voltage-divider bias is rarely used.
- **X** 2) *h*-parameters are never specified on a datasheet.
- \checkmark 3) In a *CE* amplifier, the gain can be stabilized by using a swamping resistor.
- \checkmark 4) A differential amplifier amplifies the difference of two input signals.
- **X** 5) A *CB* amplifier has high current gain.
- \mathbf{X} 6) When a transistor is saturated, the collector current is minimum.
- \checkmark 7) In an amplifier, a coupling capacitor should appear ideally as a short to the signal.
- 8) Class *AB* operation overcomes the problem of crossover distortion.
- 9) Darlington transistors can be used to increase the input resistance of a class AB amplifier.
- \checkmark 10) The *JFET* always operates with a reverse-biased gate-to-source *pn* junction.
- **X** 11) The drain current I_D of a *JFET* becomes zero if V_{DS} is at the pinch-off voltage.
- **X** 12) Forward transconductance is the change in drain voltage for a given change in gate voltage.
- ✓ 13) A *D*-MOSFET has a physical channel and an *E*-MOSFET has an induced channel.
- \checkmark 14) An analog switch is controlled by a digital input.
- **X** 15) If the feedback resistor in an inverting amplifier opens, the gain becomes zero.
- **X** 16) The gain of a voltage-follower is very high.
- **X** 17) An ideal op-amp has very high output impedance.
- \checkmark 18) An *R*/2*R* ladder circuit is one form of Digital to Analog Converter.
- \checkmark 19) Negative feedback reduces the gain of an op-amp from its open-loop value.
- **X** 20) When a triangular waveform is applied to a differentiator, a sine wave appears on the output.

Model Answer, Page 2 of 5

<u>Question #2</u>: (6 Points) Choose the right answer:

1)	A transistor circuit has $V_{CC} = 12$ V, $V_{BB} = 3$ V, $R_C = 2$ K Ω , $R_B = 50$ K Ω , and $\beta_{DC} = 80$, the transistor is		
С		(B) being driven into cutoff(D) operating nonlinearly	
2)	The voltage gain of a common-base amplifier is		
С	(A) very low(C) the same as a CE	(B) very high(D) the same as a CC	
3)	The main advantage of a common-collector amplifier is		
С	(A) high current gain(C) high input impedance	(B) high voltage gain(D) low input impedance	
4)	The main advantage of the class-B amplifier over the class-A one is		
D	(A) higher current gain(C) higher power gain	(B) higher voltage gain(D) higher efficiency	
5)	The efficiency of a power amplifier is the ratio of the power delivered to the load to		
С		(B) the power dissipated in the last stage(D) none of these answers	
6)	The maximum efficiency of a class A power amplifier is		
А	(A) 25% (C) 75%	(B) 50%(D) 78.5%	
7)	In a JFET, <i>I_{DSS}</i> is		
С	(A) the drain current with the source shorted(C) the maximum possible drain current	(B) the drain current at cutoff(D) the midpoint drain current	
8)	\Box The drain current in a JFET is controlled by		
А		(B) the drain-to-source voltage(D) the gate current	
9)	For a p-channel JFET, drain current in the constant-current region increases when		
А	(A) the gate-to-source bias voltage decreases(C) the drain-to-source voltage increases	(B) the gate-to-source bias voltage increases(D) the drain-to-source voltage decreases	
10)	The op-amp common-mode gain is		
В	(A) very high(C) always unity	(B) very low(D) unpredictable	
11)	In a zero-level detector, the output changes state when the input		
С	(A) is positive(C) crosses zero	(B) is negative(D) has a zero rate of change	
12)	In a scaling adder, the input resistors are		
С	(A) all the same value(C) each proportional to the weight of its input	(B) all of different values(D) related by a factor of two	

Model Answer, Page **3** of **5**

Question #3: (10 Points)

a) A certain transistor has $\alpha_{DC} = 0.99$. If the dc base current is 10 µA, determine r_e' .

 $r_e' = 25 \Omega$

b) An n-channel JFET has $I_{DSS} = 5$ mA and $V_{GS(off)} = -8$ V. What value of V_{GS} is required to set up a drain current of 2.25 mA.

 $V_{\rm gs} = -2.63 \ {\rm V}$

c) A certain class A power amplifier has $V_{CEQ}= 12$ V and $I_{CQ}= 1$ A. Find the maximum signal power output.

 $P_{L(max)} = 6 W$

d) What bias voltage is developed at the base of a transistor if both resistors in a voltage divider are equal and $V_{CC}=10$ V?

 $V_B = 5 V$

e) An n-channel JFET with voltage-divider bias has a gate voltage of 3V, a drain current of 9 mA, and a source resistance of 800 Ω . Calculate V_{GS} .

 $V_{\rm gs} = -4.2 \ {
m V}$

f) What is the major difference in construction of the D-MOSFET and the E-MOSFET?

A *D-MOSFET* has a physical channel; while an *E-MOSFET* has an induced channel.

g) A common-emitter amplifier is driving a load resistance $R_L = 10 \text{ k}\Omega$. If $R_C = 2.2 \text{ k}\Omega$, $I_{CQ} = 2.5 \text{ mA}$, $\beta_{ac} = 75$ and R_E is completely bypassed at the operating frequency. Find the voltage gain.

 $A_{\rm v}=-180$

h) If the gate-to-source voltage in an n-channel D-MOSFET is made more negative, what would be the effect on the drain current?

Decreases.

i) What is the major difference in construction of the MOSFET and the JFET?

In *MOSFET*, the gate is isolated from the channel by SiO_2 layer; while in the *JFET*, the gate constructs a reverse biased *pn*-junction with the channel.

j) What is the feedback element in an ideal op-amp integrator?

A capacitance.

Model Answer, Page **4** of **5**

Question #4: (5 Points)

The silicon *npn* transistors used in the two-stage amplifier shown in Fig.4 has $\beta_{dc} = \beta_{ac} = 100$.

- a) Find the operating point and r'_e for each transistor. (2 Points)
- b) Find the voltage gain and input impedance of each stage. (2 Points)
- c) Find the overall voltage gain and input impedance of the amplifier. (1 Point)

39.3 %

Question #5 (2 Points)

The class AB amplifier in Fig.5 is operating with a single power supply.

- a) Assuming the input peak-to-peak voltage is 10
 V; determine the power delivered to the load resistor and the amplifier efficiency. (1 Point)
- b) What is the maximum power that could be delivered to the load resistor? (1/2 Point)
- c) Assume the power supply voltage is raised to 30V. What is the new maximum power that could be delivered to the load resistor? (1/2 Point)

Model Answer, Page **5** of **5**

Question #6: (3 Points)

The E-MOSFET used in the common-source amplifier in Fig.6 has $I_{D(on)} = 135$ mA at $V_{GS} = 4$ V and $V_{GS(th)} = 2.5$ V.

- a) Determine the operating point V_{GSQ} , I_{DQ} and V_{DSQ} .
- b) Calculate the value of the transconductance g_m at the Q-point.
- c) Determine the voltage gain and input impedance of the amplifier.

 $V_{\text{inl}} = 1 \text{V}$

 $V_{in2} = 9V.$

 $V_{in3} = 2V$

5ΚΩ

 R_2

۸Ñ

30KΩ

 R_3

 \sim

20KΩ

 R_f

10KΩ

Fig.7

 V_o

Question #7: (2 Points)

 $g_{\rm m} = 60 \, {\rm mS}$

 $V_{GSQ} = 3 V$

- a) Find the output voltage when the indicated input voltages are applied to the scaling adder of Fig.7. (1 Point)
- b) What is the value of the current through R_f ?

(1 Point)

 $I_{DQ} = 15 \text{ mA}$

 $A_{v} = -21$

I_f = 0.6 mA

Question #8: (2 Points)

The voltage waveform of Fig.8a is applied to the non-inverting amplifier of Fig.8b. Sketch the output waveform v_o .

