January 2016

Question \#1: (10 Points)

Mark True (\checkmark) or False (x)

1) The dc load line intersects the horizontal axis of a transistor characteristic curve at $V_{C E}=V_{C C} / 2$.2) Base bias is less stable than voltage-divider bias.

2) The \boldsymbol{r} parameter $\boldsymbol{\beta}_{\boldsymbol{a c}}$ is the same as the \boldsymbol{h} parameter $\boldsymbol{h}_{\boldsymbol{f} \boldsymbol{e}}$

3) In a CE amplifier, the gain can be stabilized by using a swamping resistor.

4) A bypass capacitor in a $\boldsymbol{C E}$ amplifier decreases the voltage gain.6) A differential amplifier amplifies the difference of two input signals.7) Each transistor in a class B amplifier conducts for half of the entire input cycle.8) Class $\boldsymbol{A B}$ operation overcomes the problem of crossover distortion.

5) Darlington transistors can be used to increase the input resistance of a class AB amplifier.
\mathbf{X} 10) The channel resistance of a JFET is a constant.

6) Forward transconductance of a JFET is the change in drain voltage for a given change in gate voltage.
\mathbf{X}
7) The JFET drain current $\boldsymbol{I}_{\boldsymbol{D}}$ becomes zero at the pinch-off voltage.

8) There is no phase inversion in a CS amplifier using JFET.
9) A CS amplifier using a D-MOSFET can operate with both positive and negative input voltages.
\mathbf{X} 15) CMOS is a device used in linear amplifiers.

10) An analog switch is controlled by a digital input.
\mathbf{X} 17) An ideal op-amp has very high output impedance.
11) The closed-loop voltage gain of the op-amp inverting amplifier is dependent on the internal open-loop voltage gain of the op-amp.

12) A comparator with hyteresis has two trigger points.

X
20) When a triangular waveform is applied to a differentiator, a sine wave appears on the output.

Question \#2: (6 Points)

Choose the right answer:

1) A transistor circuit has $V_{C C}=12 \mathrm{~V}, V_{B B}=8 \mathrm{~V}, R_{C}=4 \mathrm{~K} \Omega, R_{B}=50 \mathrm{~K} \Omega$, and $\beta_{D C}=80$, the transistor is

A
 (A) being driven into saturation
 (C) being driven in the active region
 2) The $\boldsymbol{\beta}_{D C}$ of a transistor is its

(B) being driven into cutoff
(D) operating nonlinearly

B

(A) voltage gain
(B) current gain
(C) power gain
(D) internal resistance
3) The input resistance of a common-base amplifier is
A
(A) very low
(B) very high
(C) the same as a CE
(D) the same as a CC
4) An amplifier that operates in the linear region at all times is
(A) Class A
(B) Class AB
(C) Class B
(D) Class C
5) The efficiency of a power amplifier is the ratio of the power delivered to the load to
C
(A) the input signal power
(B) the power dissipated in the last stage
(C) the power from the dc power supply
(D) none of these answers
6) The peak current a class A power amplifier can deliver to a load depends on the

B
7)

(A) maximum rating of the power supply
(B) quiescent current
(C) current in the bias resistors
(D) size of the heat sink
7) In a JFET, $I_{D S S}$ is
(A) the drain current with the source shorted
(B) the drain current at cutoff
(C) the maximum possible drain current
(D) the midpoint drain current
8) The channel of a JFET is between the
(A) gate and drain
(B) drain and source
(C) gate and source
(D) input and output
9) For a p-channel JFET, drain current in the constant-current region increases when
(A) the gate-to-source bias voltage decreases
(B) the gate-to-source bias voltage increases
(C) the drain-to-source voltage increases
(D) the drain-to-source voltage decreases

10) A MOSFET differs from a JFET mainly because

C
(A) of the power rating
(C) the JFET has a pn junction
11) The op-amp common-mode gain is
(B) the MOSFET has two gates
(D) MOSFETs do not have a physical channel
B
(A) very high
(B) very low
(C) always unity
(D) unpredictable
12) When you apply a triangular waveform to the input of a differentiator, the output is
(A) a dc level
(B) an inverted triangular waveform
(C) a square waveform
(D) a sinusoidal waveform

Model Answer

Page 3 of 6

Question \#3: (10 Points)

a) If a transistor has a $\boldsymbol{d} \boldsymbol{c}$ beta of $190, \boldsymbol{V}_{\boldsymbol{B}}=2 \mathrm{~V}$, and $\boldsymbol{I}_{\boldsymbol{E}}=4 \mathrm{~mA}$, what is the $\boldsymbol{d} \boldsymbol{c}$ input resistance at the base?
$R_{\text {in(Base) }}=95 \mathrm{~K} \Omega$
b) Explain swamping.

Partially bypassing the emitter resistance to improve amplifier gain stability and increase its input impedance.

c) What characteristic of the common-collector amplifier makes it a useful circuit?

It has high input impedance.

d) What is the main advantage of the class-B amplifier over the class-A one?

It has greater efficiency.

e) An n-channel E-MOSFET has $I_{D(n)}=8 \mathrm{~mA}$ at $V_{G S}=3 \mathrm{~V}$, and $V_{G S(h)}=2.5 \mathrm{~V}$. Find I_{D} when $V_{G S}=4 \mathrm{~V}$.

$$
\begin{aligned}
& K=32 \mathrm{~mA} / \mathrm{V}^{2} \\
& I_{D}=72 \mathrm{~mA}
\end{aligned}
$$

f) In a certain self-biased n-channel JFET circuit, $\boldsymbol{I}_{\boldsymbol{D}}=8 \mathrm{~mA}$ and $\boldsymbol{R}_{\boldsymbol{S}}=1 \mathrm{~K} \Omega$. Determine $V_{G S}$.
$V_{G S}=-\mathbf{8} \mathrm{V}$
g) If the gate-to-source voltage in an n-channel D-MOSFET is made more negative, what would be the effect on the drain current?
Decreases.
h) What is the major difference in construction of the D-MOSFET and the E-MOSFET?

D-MOSFET has a built in channel.

i) Define the op-amp common-mode rejection.

It is the ability of an op-amp to produce very low common mode gain compared to the differential mod gain.
j) What is the feedback element in an ideal op-amp diffrentiator?

Resistance.

Model Answer

Page 4 of 6

Question \#4: (2 Points)

The silicon $n p n$ transistor used in the common-collector amplifier shown in Fig. 4 has $\boldsymbol{\beta}_{\boldsymbol{d} \boldsymbol{c}}=\boldsymbol{\beta}_{\boldsymbol{a c}}=120$.
a) Find r_{e}^{\prime}.
b) Draw the ac equivalent circuit of the amplifier
c) Find the exact voltage gain and the total input impedance of the amplifier.

Fig. 4

Question \#5 (3 Points)

The silicon npn transistor used in the swamped class-A power amplifier of Fig. 5 has $\beta_{d c}=\beta_{a c}=100$. The collector resistor serves also as the load resistor. The input is a sinusoidal voltage with a 1 V p-p, Determine:
a) The dc Q-point ($\boldsymbol{I}_{C Q}$ and $\boldsymbol{V}_{\text {CEQ }}$).
b) The voltage gain \boldsymbol{A}_{v}.
c) The signal power in the $\operatorname{load} \boldsymbol{P}_{\boldsymbol{L}}$.
d) The total power from the power supply $\boldsymbol{P}_{\boldsymbol{D C}}$.
e) The amplifier efficiency η.

Fig. 5

$$
A_{v}=-14.44
$$

$$
\eta=13.45 \%
$$

Model Answer

Page 5 of 6

Question \#6: (2 Points)

The JFET used in the common source amplifier of Fig. 6 has $\boldsymbol{V}_{G S(\text { off })}=-4 \mathrm{~V}$ and $\boldsymbol{I}_{D S S}=12 \mathrm{~mA}$.
a) Find $\boldsymbol{R}_{\boldsymbol{S}}$ to set up a midpoint bias.
b) Determine the drain-source voltage $\boldsymbol{V}_{\boldsymbol{D S}}$ at the \boldsymbol{Q} - point.
c) Calculate the value of the transconductance $\boldsymbol{g}_{\boldsymbol{m}}$ at the \boldsymbol{Q}-point.
d) Determine the amplifier voltage gain.

Fig. 6

$g_{\mathrm{m}}=4.24 \mathrm{mS}$
$V_{\text {DSQ }}=9.82 \mathrm{~V}$
$A_{v}=-5.1$

Question \#7: (3 Points)

The E-MOSFET used in the common-source amplifier in Fig. 7 has $\boldsymbol{I}_{\boldsymbol{D}(\boldsymbol{n})}=135 \mathrm{~mA}$ at $\boldsymbol{V}_{G S}=4 \mathrm{~V}$ and $\boldsymbol{V}_{\boldsymbol{G S}(t h)}=2.5 \mathrm{~V}$.
a) Determine the operating point $\boldsymbol{V}_{G S Q}, \boldsymbol{I}_{\boldsymbol{D Q}}$ and $V_{D S Q}$.
b) Calculate the value of the transconductance $\boldsymbol{g}_{\boldsymbol{m}}$ at the \boldsymbol{Q}-point.
c) Determine the voltage gain and input impedance of the amplifier.

 $V_{\text {GSQ }}=3 \mathrm{~V}$ $g_{\mathrm{m}}=60 \mathrm{mS}$

$V_{\text {DSQ }}=9 \mathrm{~V}$
$Z_{\text {in }}=320 \mathrm{~K} \Omega$

Model Answer
 Page 6 of 6

Question \#8 (2 Points)

Write the necessary nodal equations then find the voltages $\boldsymbol{v}_{\boldsymbol{1}}$ and $\boldsymbol{v}_{\boldsymbol{o}}$ in the circuit of Fig.8, assuming ideal op-amp.

Question \#9: (2 Points)
a) Find an expression for the output voltage $\boldsymbol{v}_{\boldsymbol{o}}(\boldsymbol{t})$ of the integrating amplifier of Fig.9.
b) If a step voltage of -4 V is applied to the input, with no energy stored in the capacitor. Sketch $\boldsymbol{v}_{\boldsymbol{o}}(\boldsymbol{t})$ for $\boldsymbol{t} \geq 0$.
c) How many milliseconds (\boldsymbol{T}) elapse before the op-amp saturates?

Fig. 9

$$
v_{o}(t)=-125 \int v_{i n} d t+K
$$

$$
T=24 \mathrm{mS}
$$

