Model Answer Page 1 of 6

EE0513-ELECTRONIC CIRCUITS

Mechatronics Program

First Term Final Exam January 2016

Attempt all questions, full mark: 40 Points

Faculty of Engineering

Time: 3 Hours

Question #1: (10 Points) Mark True (✓) or False (x)

Assiut University

- 1) The dc load line intersects the horizontal axis of a transistor characteristic curve at $V_{CE} = V_{CC}/2$.
- \checkmark 2) Base bias is less stable than voltage-divider bias.
 - (3) The *r* parameter β_{ac} is the same as the *h* parameter h_{fe}
- (4) In a CE amplifier, the gain can be stabilized by using a swamping resistor.
- **X** 5) A bypass capacitor in a *CE* amplifier decreases the voltage gain.
- \checkmark 6) A differential amplifier amplifies the difference of two input signals.
- ✓ 7) Each transistor in a class B amplifier conducts for half of the entire input cycle.
- \checkmark 8) Class *AB* operation overcomes the problem of crossover distortion.
- 9) Darlington transistors can be used to increase the input resistance of a class AB amplifier.
- **X** 10) The channel resistance of a JFET is a constant.
- **X** 11) Forward transconductance of a JFET is the change in drain voltage for a given change in gate voltage.
- **X** 12) The JFET drain current I_D becomes zero at the pinch-off voltage.
- **X** 13) There is no phase inversion in a CS amplifier using JFET.
 - 14) A CS amplifier using a D-MOSFET can operate with both positive and negative input voltages.
- **X** 15) CMOS is a device used in linear amplifiers.
- \checkmark 16) An analog switch is controlled by a digital input.
- **X** 17) An ideal op-amp has very high output impedance.
 - 18) The closed-loop voltage gain of the op-amp inverting amplifier is dependent on the internal open-loop voltage gain of the op-amp.
 - 19) A comparator with hyteresis has two trigger points.
 - 20) When a triangular waveform is applied to a differentiator, a sine wave appears on the output.

Х

Х

 \checkmark

Х

Model Answer	
Page 2 of 6	

<u>Question #2</u>: (6 Points) Choose the right answer:

1)	A transistor circuit has $V_{CC} = 12$ V, V the transistor is	$\beta_{BB} = 8 \text{ V}, R_C = 4 \text{ K}\Omega, R_B = 50 \text{ K}\Omega, \text{ and } \beta_{DC} = 80,$	
A	(A) being driven into saturation(C) being driven in the active region	(B) being driven into cutoff(D) operating nonlinearly	
2)	The β_{DC} of a transistor is its		
B	(A) voltage gain(C) power gain	(B) current gain(D) internal resistance	
3)	The input resistance of a common-ba	se amplifier is	
A	(A) very low(C) the same as a CE	(B) very high(D) the same as a CC	
4)	An amplifier that operates in the linear region at all times is		
A	(A) Class A(C) Class B	(B) Class AB (D) Class C	
5)	The efficiency of a power amplifier is	the ratio of the power delivered to the load to	
C	(A) the input signal power(C) the power from the dc power supply	(B) the power dissipated in the last stage(D) none of these answers	
6)	The peak current a class A power am	plifier can deliver to a load depends on the	
В	(A) maximum rating of the power supply(C) current in the bias resistors	(B) quiescent current(D) size of the heat sink	
7)	In a JFET, <i>I</i> _{DSS} is		
C	(A) the drain current with the source shorter(C) the maximum possible drain current	ed (B) the drain current at cutoff (D) the midpoint drain current	
8)	The channel of a JFET is between the		
B	(A) gate and drain(C) gate and source	(B) drain and source(D) input and output	
9)	For a p-channel JFET, drain current	in the constant-current region increases when	
Α	(A) the gate-to-source bias voltage decreas(C) the drain-to-source voltage increases	(B) the gate-to-source bias voltage increases(D) the drain-to-source voltage decreases	
10)	A MOSFET differs from a JFET mainly because		
C	(A) of the power rating(C) the JFET has a pn junction	(B) the MOSFET has two gates(D) MOSFETs do not have a physical channel	
11)	The op-amp common-mode gain is		
B	(A) very high(C) always unity	(B) very low(D) unpredictable	
12)	When you apply a triangular wavefor is	rm to the input of a differentiator, the output	
C		(B) an inverted triangular waveform(D) a sinusoidal waveform	

Model Answer	
Page 3 of 6	

Question #3: (10 Points)

a) If a transistor has a *dc* beta of 190, $V_B = 2$ V, and $I_E = 4$ mA, what is the *dc* input resistance at the base?

 $R_{in(Base)} = 95 \text{ K}\Omega$

b) Explain swamping.

Partially bypassing the emitter resistance to improve amplifier gain stability and increase its input impedance.

c) What characteristic of the common-collector amplifier makes it a useful circuit?

It has high input impedance.

d) What is the main advantage of the class-B amplifier over the class-A one?

It has greater efficiency.

e) An n-channel E-MOSFET has $I_{D(on)} = 8$ mA at $V_{GS} = 3$ V, and $V_{GS(th)} = 2.5$ V. Find I_D when $V_{GS} = 4$ V.

 $K = 32 \text{ mA/V}^2$ $I_D = 72 \text{ mA}$

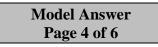
f) In a certain self-biased n-channel JFET circuit, $I_D = 8$ mA and $R_S = 1$ K Ω . Determine V_{GS} .

 $V_{GS} = -8 \text{ V}$

g) If the gate-to-source voltage in an n-channel D-MOSFET is made more negative, what would be the effect on the drain current?

Decreases.

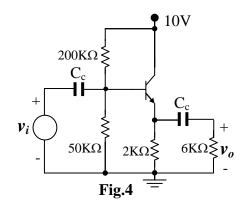
h) What is the major difference in construction of the D-MOSFET and the E-MOSFET?

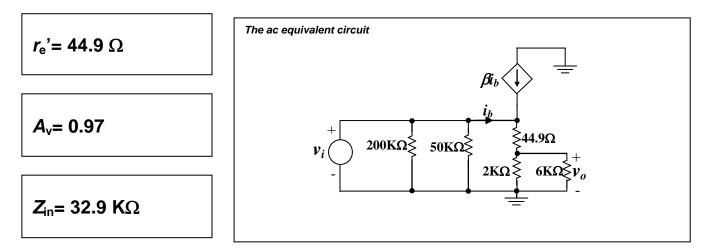

D-MOSFET has a built in channel.

i) Define the op-amp common-mode rejection.

It is the ability of an op-amp to produce very low common mode gain compared to the differential mod gain.

j) What is the feedback element in an ideal op-amp diffrentiator?

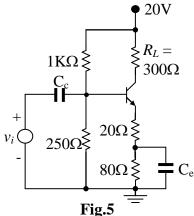

Resistance.

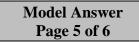


Question #4: (2 Points)

The silicon *npn* transistor used in the common-collector amplifier shown in Fig.4 has $\beta_{dc} = \beta_{ac} = 120$.

- a) Find r'_e .
- b) Draw the ac equivalent circuit of the amplifier
- c) Find the exact voltage gain and the total input impedance of the amplifier.

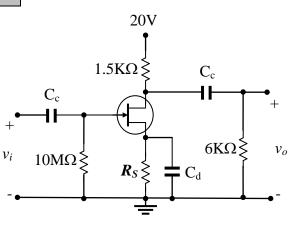



Question #5 (3 Points)

The silicon *npn* transistor used in the swamped class-*A* power amplifier of Fig.5 has $\beta_{dc} = \beta_{ac} = 100$. The collector resistor serves also as the load resistor. The input is a sinusoidal voltage with a 1V p-p, Determine:

- a) The dc Q-point (I_{CQ} and V_{CEQ}).
- b) The voltage gain A_{ν} .
- c) The signal power in the load P_L .
- d) The total power from the power supply P_{DC} .
- e) The amplifier efficiency η .

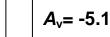
$$I_{CQ} = 32.35 \text{ mA}$$
 $V_{CEQ} = 7.06 \text{ V}$
 $A_v = -14.44$
 $P_L = 87 \text{ mW}$
 $P_{DC} = 647 \text{ mW}$
 $\eta = 13.45\%$



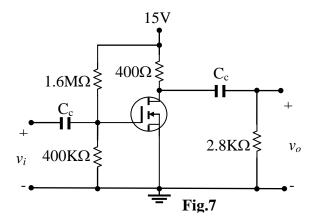
Question #6: (2 Points)

The JFET used in the common source amplifier of Fig.6 has $V_{GS(off)} = -4$ V and $I_{DSS} = 12$ mA.

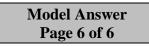
- a) Find \boldsymbol{R}_{S} to set up a midpoint bias.
- b) Determine the drain-source voltage V_{DS} at the Q- point.
- c) Calculate the value of the transconductance g_m at the Q-point.
- d) Determine the amplifier voltage gain.



*g*_m= 4.24 mS


*R*_s= 196 Ω

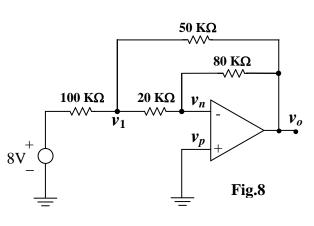



Question #7: (3 Points)

The E-MOSFET used in the common-source amplifier in Fig.7 has $I_{D(on)} = 135$ mA at $V_{GS} = 4$ V and $V_{GS(th)} = 2.5$ V.

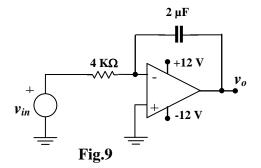
- a) Determine the operating point V_{GSQ} , I_{DQ} and V_{DSQ} .
- b) Calculate the value of the transconductance g_m at the Q-point.
- c) Determine the voltage gain and input impedance of the amplifier.

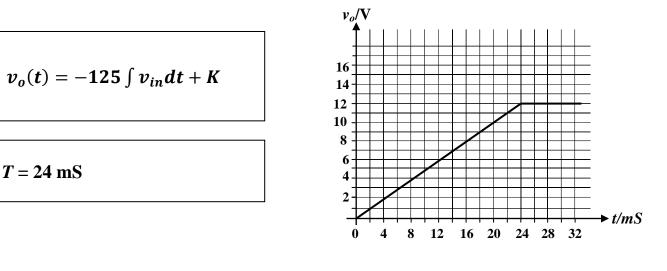
Question #8 (2 Points)

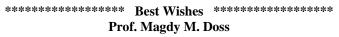

Write the necessary nodal equations then find the voltages v_1 and v_o in the circuit of Fig.8, assuming ideal op-amp.

$$4 v_1 - v_o = 4$$

 $4 v_1 + v_o = 0$


$$v_1 = 0.5 V$$


$$v_o = -2 \text{ V}$$



Question #9: (2 Points)

- a) Find an expression for the output voltage $v_o(t)$ of the integrating amplifier of Fig.9.
- b) If a step voltage of -4 V is applied to the input, with no energy stored in the capacitor. Sketch $v_o(t)$ for $t \ge 0$.
- c) How many milliseconds (*T*) elapse before the op-amp saturates?

