Question \#1: (10 Points)

Choose the right answer:

1) If a sinusoidal voltage is applied to the base of a biased npn transistor and the resulting sinusoidal collector voltage is clipped near zero volts, the transistor is
A
(A) being driven into saturation
(B) being driven into cutoff
(C) operating nonlinearly
2) The input resistance of a common-base amplifier is
A
(A) very low
(B) very high
(C) the same as a CE
(D) the same as a CC
3) The voltage gain of a common-base amplifier is
C
(A) very low (B) very high
(C) the same as a CE
(D) the same as a CC
4) The input resistance at the base of a biased transistor depends mainly on
D
(A) β
(B) R_{E}
(C) R_{B}
(D) β and R_{E}
5) A differential amplifier
D
(A) is used in op-amps
(B) has one input and one output
(C) has two outputs
(D) answers (A) and (C)
6) The maximum efficiency of a class A power amplifier is
(A) 25%
(B) 50%
A
(C) 75%
(D) 78.5%
7) Crossover distortion is a problem for
C
(A) class A amplifiers
(B) class AB amplifiers
(C) class B amplifiers
(D) all of these amplifiers
8) For $V_{G S}=0$, the drain current in a JFET becomes constant when $V_{D S}$ exceeds
C
(A) cutoff
(B) $V_{D D}$
(C) V_{P}
(D) 0 V
9)
10) A certain n-channel E-MOSFET has a $V_{G S(t h)}=2 \mathrm{~V}$. If $V_{G S}=0 \mathrm{~V}$, the drain current is
A
(A) 0 A
(B) $I_{D(O N)}$
(C) maximum
(D) $I_{D S S}$
11) Which of the following characteristics does not necessarily apply to an op-amp?
B
(A) High gain
(B) Low power
(C) High input impedance
(D) Low output impedance

Question \#2: (5 Points)

a) A certain transistor has $\alpha_{\mathrm{DC}}=0.99$. If the dc base current is $10 \mu \mathrm{~A}$, determine $r_{e}{ }^{\prime}$.

$$
\begin{aligned}
& \beta=\alpha /(1-\alpha)=99 \\
& I_{E}=(\beta+1) I_{B}=1 \mathrm{~mA} \\
& r_{e}^{\prime}=25 / I_{E}=25 \Omega
\end{aligned}
$$

b) Draw the ac equivalent circuit for the amplifier in Fig.b

Fig.b
c) An n-channel JFET has $I_{D S S}=5 \mathrm{~mA}$ and $V_{G S(o f f)}=-8 \mathrm{~V}$. What value of $V_{G S}$ is required to set up a drain current of 2.25 mA .

$$
\begin{aligned}
& I_{D}=5\left[1-V_{G S} /(-8)\right]^{2}=2.25 \\
& V_{G S}=-2.63 \mathrm{~V}
\end{aligned}
$$

d) A certain class A power amplifier has $V_{C E Q}=12 \mathrm{~V}$ and $I_{C Q}=1 \mathrm{~A}$. Find the maximum signal power output.

$$
\begin{aligned}
P_{\text {out }(\max)} & =V_{C E Q} I_{C Q} / 2 \\
& =6 \mathbf{W}
\end{aligned}
$$

e) Find V_{o} in the circuit of Fig.(e).

$$
V_{o}=-18 \mathrm{~V}
$$

Fig.(e)

Question \#3: (5 Points)

The silicon npn transistor used in the swamped amplifier shown in Fig. 3 has $\beta_{d c}=\beta_{a c}=100$.
a) Find $I_{C Q}$ and $V_{C E Q}$.
b) Find r_{e}^{\prime}.
c) Find the voltage gain and input impedance of the amplifier.

Fig. 3

$$
r_{\mathrm{e}}^{\prime}=84.6 \Omega
$$

Question \#4: (5 Points)

A class- $A B$ complementary-symmetry push-pull power amplifier is connected to a 6Ω load. The supply voltages are $\pm 24 \mathrm{~V}$.
a) Draw the amplifier circuit diagram.
(1 Point)
b) Find the peak value of the collector current, the DC power delivered by the source, and the amplifier efficiency if the ac power delivered to the load is 27 W . (3 Points)
c) What would be the maximum allowable output power?
(1 Point)

Model Answer

Page 4 of 5

Question \#5: (5 Points)

The JFET used in the common source amplifier of Fig. 5 has $V_{G S(o f f)}=-5 \mathrm{~V}$ and $I_{D S S}=10 \mathrm{~mA}$.
a) Determine the operating point $I_{D Q}, V_{G S Q}$ and $V_{\text {DSQ }}$.
(3 Points)
b) Calculate the value of the transconductance $\boldsymbol{g}_{\boldsymbol{m}}$ at the Q-point.
(1 Point)
c) Determine the amplifier voltage gain.
(1 Point)

Fig. 5

$I_{\mathrm{DQ}}=3.82 \mathrm{~mA}$

$V_{\text {GSQ }}=-1.91 \mathrm{~V}$
$V_{\text {DSQ }}=4.27 \mathrm{~V}$
$A_{v}=-2.247$

Question \#6: (3 Points)

a) The data sheet for a 2 N 7008 E-MOSFET gives $I_{D(\mathrm{n})}=500 \mathrm{~mA}$ at $V_{G S}=10 \mathrm{~V}$ and $V_{G S(t h)}=1 \mathrm{~V}$. Determine the drain current for $V_{G S}=5 \mathrm{~V}$.
(1 Point)
b) The transistor is to operate at: $V_{G S Q}=5 \mathrm{~V}, V_{D S Q}=10 \mathrm{~V}$. Draw a suitable circuit to bias this transistor giving suitable resistances values, assuming that $V_{D D}=15 \mathrm{~V}$.
(2 Points)

$$
I_{\mathrm{D}}=98.765 \mathrm{~mA}
$$

The Circuit Diagram

Question \#7: (3 Points)

a) Find the output voltage when the indicated input voltages are applied to the scaling adder of Fig.7.
(2 Points)
b) What is the value of the current through R_{f} ?
(1 Point)

Fig. 7

$$
V_{0}=-6 \mathrm{~V}
$$

Question \#8: (4 Points)

The voltage waveform v_{g} shown in Fig.(8-a) is applied to the circuit of Fig.(8-b). Sketch v_{o} versus t, assuming ideal op-amp.

Fig. (8-b)

Fig. (8-a)

