ASSIUT UNIVERSITY
FACULTY OF ENGINEERING DEPT. OF ELECTRICAL ENG.

E222 CIRCUIT THEORY (2)
2nd Year Elect.
First Term Examination, 2016/2017

الامتحان مكون من أريع صفحات، الإجابة فى نفس ورقة الاسنئة، النهاية العظمى 100 درجة. الإجابة النهائية يجب أن تكون مكتوبة فى المكان المخصص لها وخطوات الحل تكون فى الصفحة المقابلة.
Attempt all questions, full mark: 100 Points
Time: 3 Hours

Question \#1: (8 Points)

Design a difference amplifier (Fig.1) to meet the following criteria: $V_{\text {out }}=3 V_{\mathrm{b}}-4 V_{\mathrm{a}}$. The resistance seen by the signal source V_{a} is $22 \mathrm{k} \Omega$ when V_{b} is zero, and the resistance seen by the signal source V_{b} is $500 \mathrm{~K} \Omega$.
a) Specify the values of $R_{\mathrm{a}}, R_{\mathrm{b}}, R_{\mathrm{c}}$, and R_{d}.
b) If $V_{\mathrm{a}}=1.25 \mathrm{~V}$ and $V_{\mathrm{b}}=4 \mathrm{~V}$, find I_{o}.
(6 Points)
(2 Points)

Fig. 1
a)
$R_{\mathrm{a}}=\mathbf{2 2 K} \mathrm{K}$

$$
R_{\mathrm{b}}=88 \mathrm{~K} \Omega
$$

$$
R_{\mathrm{c}}=200 \mathrm{~K} \Omega
$$

$$
R_{\mathrm{d}}=300 \mathrm{~K} \Omega
$$

b) $I_{0}=0.052 \mathrm{~mA}$

Question \#2: (20 Points)

The switch in the circuit of Fig. 2 have been in position (a) for a long time. At $t=0$, the switch moves to position (b). The switch remains in position (b) a time equals $\boldsymbol{t}_{\mathbf{1}}$ until the voltage v becomes 5 V , then it moves again to position (a).
a) Find $\boldsymbol{v}(\boldsymbol{t})$ for $0 \leq \boldsymbol{t} \leq \boldsymbol{t}_{\boldsymbol{1}}$.
b) Find the time \boldsymbol{t}_{1}.
c) Find the current $\boldsymbol{i}(\boldsymbol{t})$ for $\boldsymbol{t}_{1} \leq \boldsymbol{t} \leq \infty$.
(4 Points)
(8 Points)
a)

$$
v\left(0^{+}\right)=80 \mathrm{~V}
$$

$$
v(\infty)=0
$$

$$
v(t)=80 \mathrm{e}^{-t / 50},(\mathrm{t} \text { in } \mathrm{mSec})
$$

b) $t_{1}=138.6 \mathrm{mS}$
c)

$$
\tau_{2}=8 \mathrm{mS}
$$

$$
i(t)=18.75 \mathrm{e}^{-(t-138.6) / 8}
$$

Question \#3: (14 Points)

The two switches in the circuit of Fig. 3 operate synchronously. Switch (1) has been in position (a) and switch (2) is closed for a long time, at $t=0$, switch (1) moves instantaneously to position (b) and switch (2) is open. Find $\boldsymbol{v}_{c}\left(0^{+}\right)$, $v_{c}(\infty), i_{L}\left(0^{+}\right),\left[d v_{c} / d t\right]_{0+}$, the roots of the characteristic equation s_{1}, s_{2} and $v_{c}(t)$ for $\boldsymbol{t} \geq \mathbf{0}$.

Fig. 3

$$
v_{c}(\infty)=60 \mathrm{~V}
$$

$$
\left[d v_{d} d t\right]_{0_{+}}=-2500 \mathrm{~V} / \mathrm{Sec}
$$

$$
s_{2}=-50-\mathrm{j} 50
$$

$$
v_{c}(t)=60-e^{-50 t}(150 \cos 50 t+200 \sin 50 t) \text { volts }
$$

Question \#4: (12 Points)

3. A balanced Δ-connected load has an impedance of $180+j 75 \Omega / \varphi$. The load is fed through lines having an impedance of $1+\mathrm{j} 1 \Omega /$ line. The phase voltage at the terminals of the load is 1950 V . Calculate:
a) The magnitude of the phase current at the load.
b) The magnitude of the line current.
c) The magnitude of the line voltage at the sending end.
d) The total power dissipated in the load.

The magnitude of the phase current at the load

10 A

The magnitude of the line current
17.3 A

The magnitude of the line voltage at the sending end
1989.3 V

The total power dissipated in the load

Page 3 of 4

Question \#5: (12 Points)

The two switches in the circuit shown in Fig. 5 operate simultaneously. There is no energy stored in the circuit at the instant the switches close. Find the s-domain Thevenin equivalent of the circuit to the left of the terminals (a), (b), then find $\boldsymbol{I}(\boldsymbol{s})$ and $\boldsymbol{i}(\boldsymbol{t})$ for $\boldsymbol{t} \geq \mathbf{0}$.

Fig. 5

$$
Z_{\mathrm{Th}}(s)=2000 \frac{s+50}{s+100} \Omega
$$

$$
I(s)=\frac{s / 50}{s^{2}+300 s+25 \times 10^{3}}
$$

$$
i(t)=0.0632 e^{-150 t} \cos \left(50 t+71.6^{\circ}\right) A
$$

Question \#6: (12 Points)

Find the current $\boldsymbol{I}_{\mathbf{1}}, \boldsymbol{I}_{\mathbf{2}}$ and the voltage $\boldsymbol{V}_{\mathbf{o}}$ in the circuit of Fig. 6

Fig. 6

The first loop equation
$5 l_{1}+j 4.5 I_{2}=30$

The second loop equation
$-(8+j 1.5) l_{1}+(8+j 6) I_{2}=0$
$I_{1}=4.06 \angle-26.39^{\circ} \mathrm{A}=3.64-j 1.8 \mathrm{~A}$

$$
I_{2}=3.3 \angle-52.64^{\circ} \mathrm{A}=2-j 0.82 \mathrm{~A}
$$

$$
V_{0}=14.66 \angle 26.6^{\circ} \mathrm{V}=13.12+j 6.56 \mathrm{~V}
$$

Page 4 of 4

Question \#7: (14 Points)

The Fourier series of the half-wave rectified sinusoidal voltage:

$$
\begin{array}{ll}
v(t)=V_{M} \sin \left(\omega_{o} t\right), & 0 \leq t \leq \frac{T}{2} \\
v(t)=0, & \frac{T}{2} \leq t \leq T
\end{array}
$$

is given by:
$v(t)=\frac{V_{M}}{\pi}+\frac{V_{M}}{2} \sin \left(\omega_{o} t\right)-\frac{2 V_{M}}{\pi} \sum_{n=1}^{\infty} \frac{\cos \left(2 n \omega_{o} t\right)}{4 n^{2}-1}$.
A half-wave rectified sinusoidal voltage having $V_{M}=100 \mathrm{~V}$ and $\omega_{b}=800 \mathrm{rad} / \mathrm{s}$ is applied to the circuit of Fig.7. Find:
a) The magnitude of the first three non-zero terms of the output voltage. (6 Points)
b) The RMS value of the input voltage.
(4 Points)
c) The RMS value of the output voltage.

Fig. 7
(4 Points)

$V_{\text {o(dc) }}=100 / \pi \mathrm{V}$	$V_{\mathrm{o}(1)}=103.8 \mathrm{~V}$

Question \#8: (8 Points)

The following dc measurements were made on the resistive network shown in Fig. 8 Measurement 1:
$\boldsymbol{V}_{1}=4 \mathrm{~V}, \boldsymbol{I}_{1}=44 \mathrm{~mA}, \boldsymbol{V}_{2}=0, \boldsymbol{I}_{\mathbf{2}}=-200 \mathrm{~mA}$
Measurement 2:
$\boldsymbol{V}_{\mathbf{1}}=20 \mathrm{~V}, \mathbf{I}_{\mathbf{1}}=20 \mathrm{~mA}, \boldsymbol{V}_{\mathbf{2}}=4 \mathrm{~V}, \boldsymbol{I}_{\mathbf{2}}=0$
a) Find the transmission (a) parameters of the circuit.
b) Find $\boldsymbol{V}_{\mathbf{1}}, \boldsymbol{V}_{\mathbf{2}}, \boldsymbol{I}_{\mathbf{1}}$, and $\boldsymbol{I}_{\mathbf{2}}$.
(4 Points)
b) Find $\boldsymbol{V}_{\mathbf{1}}, \boldsymbol{V}_{\mathbf{2}}, \boldsymbol{I}_{\mathbf{1}}$, and $\boldsymbol{I}_{\mathbf{2}}$. (4 Points)

Fig. 8
$a_{11}=5$
$V_{1}=3.85 \mathrm{~V}$

$a_{22}=0.22$
$I_{2}=-3.77 \mathrm{~mA}$

