E222 CIRCUIT THEORY(2) 2nd Year Elect.

First Term Examination, 2015/2016

الامتحان مكون من أربع صفحات، الإجابة فى نفس ورقة الأسئلة، النهاية العظمى • . 1 الـرجة. الإجابة النهائية يجب أن تكون مكتوبة فى المكان المخصص لها وخطوات الحل تكون فى الصفحة المقابلة.

Question \#1: (12 Points)

The feedback resistance \boldsymbol{R}_{f} in the circuit of Fig. 1 is variable. Assuming ideal op-amp find:
a) The range of values for \boldsymbol{R}_{f} in which the opamp does not saturate.
(2 Points)
b) $\boldsymbol{V}_{\text {out }}, \boldsymbol{I}_{\mathbf{0}}, \boldsymbol{I}_{\mathbf{1}}$, and $\boldsymbol{I}_{\mathbf{2}}$ for $\boldsymbol{R}_{f}=50 \mathrm{~K} \Omega$. (4 Points)
c) $\boldsymbol{V}_{\text {out }}, \boldsymbol{V}_{\mathbf{1}}, \boldsymbol{I}_{\mathbf{0}}, \boldsymbol{I}_{\mathbf{1}}$, and $\boldsymbol{I}_{\mathbf{2}}$ for $\boldsymbol{R}_{f}=360 \mathrm{~K} \Omega$. (6 Points)

Fig. 1
a) $0 \leq R_{f} \leq \mathbf{2 0 0} \mathrm{K} \Omega$
b)

$I_{1}=50 \mu \mathrm{~A} \quad I_{2}=0$
c) $\quad V_{\text {out }}=-10 \mathrm{~V}$

$$
V_{1}=200 \mathrm{mV}
$$

$$
I_{0}=428.3 \mu \mathrm{~A}
$$

$$
I_{1}=30 \mu \mathrm{~A}
$$

$$
I_{2}=1.67 \mu \mathrm{~A}
$$

Question \#2: (16 Points)

Both switches in the circuit in Fig. 2 have been closed for a long time. At $t=0$, both switches open simultaneously.
a) Find $i_{o}(t)$ for $t \geq 0^{+}$.
(8 Points)
b) Find $v_{o}(t)$ for $t \geq 0^{+}$.
(4 Points)
c) Calculate the energy (in micro joules) trapped in the circuit.
(4 Points)

Fig. 2

$$
i_{0}\left(0^{+}\right)=24 \mathrm{~mA}
$$

$$
i_{0}(\infty)=0
$$

$$
\tau=2 \mathrm{mS}
$$

$$
i_{0}(t)=24 e^{-500 t}
$$

$$
v_{o}(t)=80-8 e^{-500 t}
$$

Question \#3: (12 Points)

The switch in the circuit shown in Fig. 3 has been closed for a long time. The switch opens at $t=0$. Find $v_{c}\left(0^{+}\right), i_{L}\left(0^{+}\right),\left[d v_{c} / d t\right]_{0^{+}}$, the roots of the characteristic equation s_{1}, s_{2} and $v_{c}(t)$ for $t \geq 0$.
$v_{C}\left(0^{+}\right)=108 \mathrm{~V}$

$$
i_{L}\left(0^{+}\right)=6 \mathrm{~A}
$$

Fig. 3

$$
[d v d d f]_{0_{+}}=-1200 \mathrm{~V} / \mathrm{S}
$$

$$
s_{1}=-10-j 10 \quad s_{2}=-10+j 10
$$

$$
v_{c}(t)=(108 \cos 10 t-12 \sin 10 t) e^{-10 t} \text { volts }
$$

Question \#4: (12 Points)

A three-phase Y-connected + ve sequence source having the phase voltage $V_{a}=220 \angle 0^{\circ} \mathrm{V}$. The source resistance is $1 \Omega /$ Phase. The source supplies a balanced Δ connected load having an impedance of $(30+j 12) \Omega /$ Phase. The three lines connecting the source to the load have an impedance of $1+\mathrm{j} 1 \Omega /$ Line. Find the following:
The Line current $\overline{I_{B}}=16.9 \angle-142.6^{\circ} \mathrm{A}$

The phase current $\overline{I_{A B}}$ at the load= $9.77 \angle 7.4^{\circ} \mathrm{A}$

$$
\text { The Line voltage } \overline{V_{B C}}=315.6 \angle-90.8^{\circ} \mathrm{V}
$$

The phase voltage $\overline{V_{a}}$ at the source terminals=
The Line voltage $\overline{V_{a b}}$ at the source terminals=

The total power dissipated in the load $=$
$204.5 \angle 1.8^{\circ}$ V
$354.2 \angle 31.8^{\circ} \mathrm{V}$

8.592 KW

Question \#5: (12 Points)

Use the Laplace transform to find $\boldsymbol{v}_{\boldsymbol{o}}$ and $\boldsymbol{v}_{\boldsymbol{1}}$ in the circuit shown in Fig. 5 if $\boldsymbol{i}_{\boldsymbol{g}}=\mathbf{1 0} \boldsymbol{u}(\boldsymbol{t}) \mathbf{m A}$ and $\alpha=75 \mathbf{m A} / V$. There is no energy stored in the circuit at $t=0$.

Fig. 5

$$
V_{o}(s)=\frac{0.1(s+20)}{s^{2}+20 s+100}=\frac{0.1}{s+10}+\frac{1}{(s+10)^{2}}
$$

$$
V_{1}(s)=\frac{2}{(s+10)^{2}}
$$

$$
v_{o}(t)=(t+0.1) e^{-10 t} \text { volts }
$$

$$
v_{1}(t)=2 t e^{-10 t} \text { volts }
$$

Question \#6: (12 Points)

The linear transformer used in the circuit of Fig. 6 has a coupling coefficient $\boldsymbol{k}=0.5$.
a) Calculate the impedance reflected into the primary winding \boldsymbol{Z}_{r}. (4 Points)

Fig. 6
b) Calculate the impedance seen looking into the primary terminals of the transformer $Z_{a b}$.
(2 Points)
c) Calculate the Thevenin equivalent with respect to the terminals $\boldsymbol{c}, \boldsymbol{d}$.
(6 Points)

$$
Z_{r}=8+j 8=11.31 \angle 45^{\circ} \Omega
$$

$$
Z_{a b}=10+j 44=45.12 \angle 77.2^{\circ} \Omega
$$

$$
Z_{T h}=1.71+j 12.24=12.36 \angle 82^{\circ} \Omega
$$

$$
V_{T h}=9.39+j 1.77=9.56 \angle 10.7^{\circ} \mathrm{V}
$$

Question \#7: (8 Points)

Fig. 7 shows an $\boldsymbol{R} \boldsymbol{-} \boldsymbol{L}$ high pass filter.
a) What is the transfer function, $\boldsymbol{H}(\boldsymbol{s})=\boldsymbol{V}_{\mathbf{0}}(\boldsymbol{s}) / \boldsymbol{V}_{\mathrm{i}}(\boldsymbol{s})$, of this filter?
(4 Points)
b) What is the cutoff frequency of this filter?
(2 Points)
c) What is the maximum value of the transfer function; and at what frequency does it occur?
(2 Points)

Fig. 7

$$
H(s)=\frac{2 s}{3 s+6 \times 10^{4}}
$$

$\omega_{c}=2 \times 10^{4} \mathrm{Rad} / \mathrm{Sec}$

$$
H_{\max }=2 / 3 \quad \text { at } \omega=\infty
$$

Question \#8: (8 Points)

Sketch the Bode Diagram of the voltage transfer function: $H_{v}(s)=\frac{400 s(s+1000)}{(s+20)(s+10000)}$

Question \#9: (8 Points)

Find the \boldsymbol{h} parameters of the two-port circuit shown in Fig.9.

Fig. 9

$$
h_{11}=110+j 20 \Omega
$$

$$
h_{12}=0.5
$$

$$
h_{22}=2.5+j 10 \mathrm{mS}
$$

$$
h_{21}=-0.5
$$

