

E222 CIRCUIT THEORY(2) 2nd Year Elect.

10KΩ

120KΩ≥

 I_1^{\uparrow}

500mV (

 $\downarrow I_2$

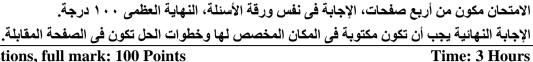
47KΩ≶

R_f

+10 V

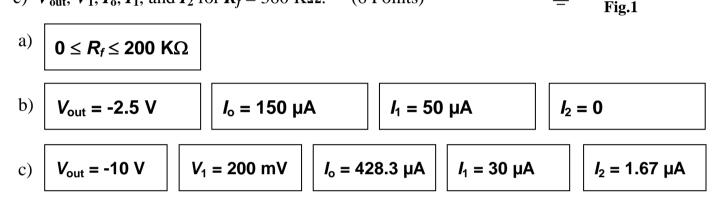
-10 V

25KΩ


Vout

First Term Examination, 2015/2016

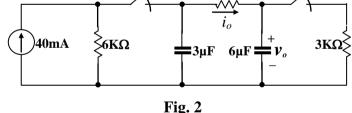
ASSIUT UNIVERSITY FACULTY OF ENGINEERING DEPT. OF ELECTRICAL ENG.



Attempt all questions, full mark: 100 Points

Question #1: (12 Points)

The feedback resistance R_f in the circuit of Fig.1 is variable. Assuming ideal op-amp find:


- a) The range of values for R_f in which the opamp does not saturate. (2 Points)
- b) V_{out} , I_0 , I_1 , and I_2 for $R_f = 50 \text{ K}\Omega$. (4 Points)
- c) V_{out} , V_1 , I_0 , I_1 , and I_2 for $R_f = 360 \text{ K}\Omega$. (6 Points)

Question #2: (16 Points)

Both switches in the circuit in Fig.2 have been closed for a long time. At t = 0, both switches open simultaneously.

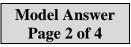
- a) Find $i_o(t)$ for $t \ge 0^+$. (8 Points)
- b) Find $v_o(t)$ for $t \ge 0^+$. (4 Points)
- c) Calculate the energy (in micro joules) trapped in the circuit. (4 Points)

1ΚΩ

t=0

$$i_o(0^+) = 24 \text{ mA}$$
 $i_o(\infty) = 0$ $\tau = 2\text{mS}$

 $i_o(t) = 24 e^{-500t}$


$$v_o(t) = 80 - 8 e^{-500t}$$

Energy trapped in the circuit = $28800 \ \mu J$

Fig. 2

t=0

Question #3: (12 Points)

The switch in the circuit shown in Fig.3 has been closed for a long time. The switch opens at t = 0. Find $v_c(0^+)$, $i_L(0^+)$, $[dv_c/dt]_{0+}$, the roots of the characteristic equation s_1 , s_2 and $v_c(t)$ for $t \ge 0$.

 $v_{C}(0^{+}) = 108 \text{ V}$

 $i_L(0^+) = 6 \text{ A}$

Fig. 3

1H

 i_L

≥11Ω

10Ω

8Ω

t=0

<u>70Ω</u>

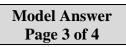
240V

<u>20Ω</u>

5mF

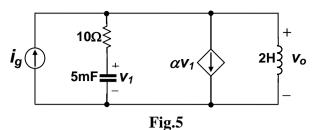
Vc

 $s_1 = -10 - j10$


 $s_2 = -10 + j10$

$v_c(t) = (108 \cos 10t - 12 \sin 10t)e^{-10t}$ volts

<u>Question #4</u>: (12 Points)


A three-phase Y-connected +ve sequence source having the phase voltage $V_a=220 \ge 0^{\circ}$ V. The source resistance is 1 Ω /Phase. The source supplies a balanced Δ -connected load having an impedance of (30 + j12) Ω /Phase. The three lines connecting the source to the load have an impedance of 1+j1 Ω /Line. Find the following:

The Line current $\overline{I_B}$ =	16.9 ∠-142.6° A
The phase current $\overline{I_{AB}}$ at the load=	9.77 ∠7.4° A
The Line voltage V_{BC} =	315.6 ∠-90.8° V
The phase voltage $\overline{V_a}$ at the source terminals=	204.5 ∠1.8° V
The Line voltage $\overline{V_{ab}}$ at the source terminals=	354.2 ∠31.8° V
The total power dissipated in the load =	8.592 KW

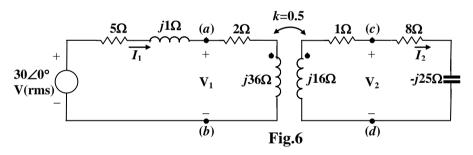
Question #5: (12 Points)

Use the Laplace transform to find v_o and v_I in the circuit shown in Fig.5 if $i_g = 10u(t)$ mA and $\alpha = 75$ mA/V. There is no energy stored in the circuit at t=0.

$$V_o(s) = \frac{0.1(s+20)}{s^2+20s+100} = \frac{0.1}{s+10} + \frac{1}{(s+10)^2}$$

$$V_1(s) = \frac{2}{(s+10)^2}$$

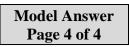
$$v_o(t) = (t + 0.1)e^{-10t}$$
 volts


 $v_1(t) = 2te^{-10t}$ volts

Question #6: (12 Points)

winding Z_r .

The linear transformer used in the circuit of Fig.6 has a coupling coefficient k = 0.5. a) Calculate the impedance reflected into the primary


(4 Points)

- b) Calculate the impedance seen looking into the primary terminals of the transformer Z_{ab} . (2 Points)
- c) Calculate the Thevenin equivalent with respect to the terminals *c,d*. (6 Points)

$$Z_r = 8 + j8 = 11.31 \angle 45^\circ \Omega$$

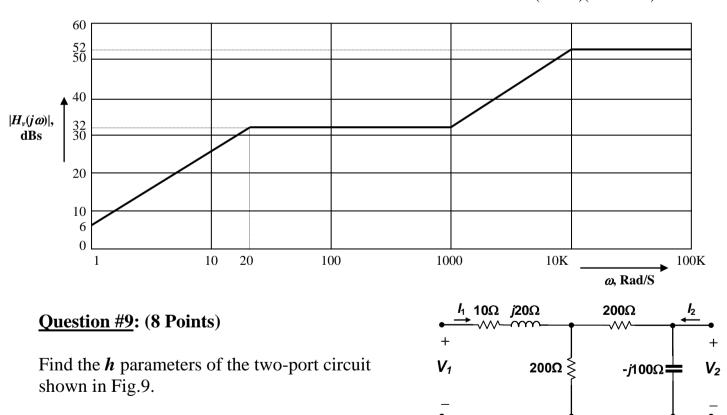
 $Z_{ab} = 10 + j44 =$
 $Z_{Th} = 1.71 + j12.24 = 12.36 \angle 82^\circ \Omega$
 $V_{Th} = 9.39 + j1.7$

$$V_{Th} = 9.39 + i1.77 = 9.56 \angle 10.7^{\circ} \text{ V}$$

<u>Question #7</u>: (8 Points)

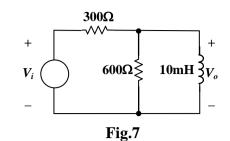
Fig.7 shows an *R-L* high pass filter.

- a) What is the transfer function, $H(s) = V_0(s)/V_i(s)$, of this filter? (4 Points)
- b) What is the cutoff frequency of this filter? (2 Points)
- c) What is the maximum value of the transfer function; and at what frequency does it occur? (2 Points)


$$H(s) = \frac{2s}{3s + 6 \times 10^4}$$

$$\omega_c = 2 \times 10^4 \text{ Rad/Sec}$$

at $\omega = \infty$


<u>Question #8</u>: (8 Points)

Sketch the Bode Diagram of the voltage transfer function: $H_v(s) = \frac{400s(s+1000)}{(s+20)(s+10000)}$

 $h_{11} = 110 + j20 \Omega$

 $h_{21} = -0.5$

 $h_{12} = 0.5$

*h*₂₂ = 2.5 + *j*10 mS

Fig.9