

E222 CIRCUIT THEORY

2<u>nd</u> Year Elect.

First Term Examination, 2014/2015 Model Answer

Attempt all questions, full mark: 100 Points

Time: 3 Hours

i(t)

 $4 \Omega \leq v(t)$

<u>Question #1</u>: (12 Points)

ASSIUT UNIVERSITY

FACULTY OF ENGINEERING DEPT. OF ELECTRICAL ENG.

The circuit shown in Fig.1 is used to measure the change in resistance experienced by strain gages.

- a) Derive an expression for the output voltage V_{out} in terms of the resistance values and the reference voltage V_{ref} , assuming ideal op-amp and neglecting ΔR^2 w.r.t. R^2 . (8 Points)
- b) If $\mathbf{R} = 160 \Omega$, $\Delta \mathbf{R} = 1 \Omega$, $\mathbf{R}_f = 1.2 \text{ K}\Omega$, and $V_{ref} = 8 \text{ V}$; find the value V_{out} . (4 Points)

Expression for V_{out}:

$$V_{out} = \frac{2R_f \triangle R}{R^2} \cdot V_{ref}$$

Value of Vout:

Question #2: (16 Points)

In the circuit shown in Fig.2, the initial currents in inductors L_1 and L_2 are 8A and 1A respectively. The switch is opened at t = 0.

- a) Find i(t), for $t \ge 0$.
- b) Find v(t), for $t \ge 0$.
- c) Find $i_1(t)$ and $i_2(t)$, for $t \ge 0$. (4 Points)
- d) Determine the total energy stored in the inductors as $t \rightarrow \infty$. (2 Points)

 $i(\infty) = 0$

$$i(t) = 9 e^{-2t} A$$

$$v(t) = 36 e^{-2t} V$$

$$i_1(t) = -2 - 6 e^{-2t} A$$

$$i_2(t) = 2 - 3 e^{-2t} A$$

Energy stored in the inductors as $t \rightarrow \infty = 18 \text{ J}$

 i_2

 $\tau = 0.5 \text{ S}$

L₂=6H

Fig.2

t=0

 $L_1=3H$ 1A

8A

(8 Points)

(2 Points)

80V

Question #3: (12 Points)

The switch in the circuit shown in Fig.3 has been in position (a) for a long time. At t = 0, it moves to position (b). Find $i(0^+)$, $v_c(0^+)$, $di(0^+)/dt$, the roots of the characteristic equation s_1 , s_2 and i(t) for $t \ge 0$.

i (0⁺) = 0

 $di(0^{+})/dt = 10^{4} \text{ A/S}$

 $s_1 = -8000 + j\,6000$

 $s_2 = -8000 - j\,6000$

9KΩ

 $v_{C}(0^{+}) = 50 \text{ V}$

15KΩ >

80Ω

я

2µF

Fig. 3

5mH

100V

 $i(t) = 1.6736 e^{-8000t} \sin(6000t) A$

Question #4: (12 Points)

A three-phase Δ -connected -ve sequence source having the phase voltage $V_{ab}=240 \angle 0^{\circ}V$ and negligible source resistance. The source supplies a resistive unbalanced Δ -connected load having impedances: $R_{AB}=60 \Omega$, $R_{BC}=40 \Omega$, and $R_{CA}=80 \Omega$. The three lines connecting the source to the load have negligible resistances. The load power is measured using the two wattmeter method. The first wattmeter W_I is connected between lines A and B, while the second one W_2 is connected between lines C and B. Find the following:

The phase current $\overline{I_{AB}}$ at the load =	4∠0° A
The Line current $\overline{I_A}$ =	6.08∠25.3° A
The Line current $\overline{I_C} =$	7.94∠79.1° A
The reading of $W_I =$	1.32 KW
The reading of $W_2 =$	1.8 KW
The total power dissipated in the load =	3.12 KW

Question #5: (14 Points)

The voltage source v_g drives the circuit shown in Fig.5. The response signal is the voltage across the capacitor, v_o .

- a) Calculate the numerical expression for the voltage transfer function $H_v(s) = V_o(s)/V_g(s)$.
- (6 points)b) Calculate the numerical values for the poles and zeros of the transfer function. (4 points)
- c) The circuit is driven by a step voltage source, namely, $v_g = 50u(t)$, find $v_0(t)$. (4 points)

Question #6: (12 Points)

The ideal transformer used in the circuit of Fig.6 has a turns ratio $N_2/N_1 = 3$.

a) Find the reflected impedance at terminals a-b of that transformer.

(6 Points)

b) Calculate the value of the currents I_1, I_2, I_3 , and I_4 . (6 Points)

$$Z_R = \left(\frac{a}{1+a}\right)^2 R_L = 54\Omega$$

*I*₁ = 0.584∠30.1° A

*I*₃ = 0.779∠30.1° A

*I*₂ = 0.195∠30.1° A

*I*₄ = 4.35∠-33.3° A

Question #7: (6 Points)

- a) Calculate the impedance of the circuit shown in Fig.7 at radian frequency of 2 Krad/S. (2 Points)
- b) At what finite frequency (ω_r) does the impedance of the circuit become purely resistive? What is the impedance at that frequency? (4 Points)

$$Z$$
(2Krad) = 9 – *j*12 Ω $ω_r$ = 4 Krad/S $Z(ω_r)$ = 15 Ω

Question #8: (8 Points)

Sketch the Bode Diagram of the voltage transfer function: $H_v(s) = \frac{1000(s+100)}{(s+100)(s+1000)}$

Question #9: (8 Points)

The y parameters for the two-port network in Fig.9 are: y_{11} = 2mS, y_{12} = -0.2 mS, y_{21} = 10 mS, and y_{22} = -0.5 mS. Find V_1 , V_2 , I_1 , and I_2 .

 $I_1 = 4.8 \text{ mA}$

