Model	Answer
Раде	1 of 5

3rd Year Control and **Computers Section**

التي معالم الشيوط	Assiut University E302 Faculty of Engineering Dept. of Electrical Engineering	-ELECTRONIC CIRCUITS (1) First Term Final Exam January 2015	3 rd Year Control and Computers Section				
Attem	pt all questions, full mark: 100 Po	ints	Time: 3 Hours				
Quest	<u>ion #1</u> : (20 Points)						
Choos	se the right answer:						
1)	In a voltage-divider biased (the one connected to ground	npn transistor, if the lower volt 1d) opens,	age-divider resistor				
D	(A) the transistor is not affected(C) the collector current will decret	(B) the transistor may be (D) the transistor may be	driven into cutoff driven into saturation				
2)	A differential amplifier						
D	(A) is used in op-amps(C) has two outputs	(B) has one input and one(D) answers (A) and (C)	(B) has one input and one output(D) answers (A) and (C)				
3)	A MOSFET differs from a	JFET mainly because					
С	(A) of the power rating(C) the JFET has a <i>pn</i> junction	(B) the MOSFET has two(D) MOSFETs do not hav	gates e a physical channel				
4)	The efficiency of a power an load to the	mplifier is the ratio of the power	r delivered to the				
B	(A) input signal power(C) power dissipated in the transis	(B) power from the dc po (D) power dissipated in th	wer supply ne last stage				
5)	When operated in cutoff an	d saturation, the transistor acts	s like a				
B	(A) linear amplifier(C) variable capacitor	(B) switch(D) variable resistor					
6)	In saturation, $V_{\rm CE}$ is						
С	(A) 0.7 V (C) minimum	(B) equal to $V_{\rm CC}$ (D) maximum					
7)	A certain common-emitter a bypass capacitor is removed	amplifier has a voltage gain of 1 d.	00. If the emitter				
B	(A) the circuit will become unstab (C) the voltage gain will increase	(B) the voltage gain will of (D) the Q-point will shift	lecrease				
8)	A differential amplifier						
D	(A) is used in op-amps(C) has two outputs	(B) has one input and one(D) answers (a) and (c)	output				
9)	The peak current a class A	power amplifier can deliver to a	a load depends on				
В	(A) maximum rating of the power (C) current in the bias resistors	supply (B) quiescent current (D) size of the heat sink					

10) If the gate-to-source voltage in an n-channel E-MOSFET is made more positive, the drain current will

(A) increase (C) decrease

А

(B) remain unchanged

Model Answer Page 2 of 5

Question #2: (10 Points)

a) A certain transistor has $\alpha_{DC} = 0.99$. If the dc base current is 10 µA, determine r_e' .

 $\beta = \alpha/(1-\alpha) = 99$ $I_E = (\beta + 1)I_B = 1 \text{ mA}$ $r_e' = 25/I_E = 25 \Omega$

b) A common-emitter amplifier is driving a load resistance $R_L = 10 \text{ k}\Omega$. If $R_C = 2.2 \text{ k}\Omega$, $I_{CQ} = 2.5 \text{ mA}$, $\beta_{ac} = 75$ and R_E is completely bypassed at the operating frequency. Find the voltage gain.

 $r_e' = 25/I_E = 10 \Omega$ $R_C' = 2.2//10 = 1.8 \text{ K}\Omega$ $A_v = -R_C'/r_e' = -180$

c) An n-channel JFET has $I_{DSS} = 5$ mA and $V_{GS(off)} = -8$ V. What value of V_{GS} is required to set up a drain current of 2.25 mA.

$$I_D = 5[1 - V_{GS}/(-8)]^2 = 2.25$$

 $V_{GS} = -2.63$ V

d) Each stage of a four-stage amplifier has a voltage gain of 15. Find the overall voltage gain in dBs.

 $A_v = 94.09 \text{ dBs}$

e) An n-channel E-MOSFET has $I_{D(on)} = 18$ mA at $V_{GS} = 4$ V, and $V_{GS(th)} = 2.5$ V. Find I_D when $V_{GS} = 3.25$ V.

 $K = 8 \text{ mA/V}^2$ $I_D = 4.5 \text{ mA}$

Question #3: (10 Points)

The silicon npn transistor used in the swamped amplifier shown in Fig.3 has $\beta_{dc} = \beta_{ac} = 100$.

- a) Find I_{CQ} and V_{CEQ} .
- b) Find $r_{e}^{'}$.
- c) Find the voltage gain and input impedance of the amplifier.

Question #4: (12 Points)

The silicon *npn* transistor used in the common base amplifier of Fig.4 has $\beta_{dc} = \beta_{ac} = 250$.

- a) Find I_{CQ} and V_{CEQ} . (4 Points) b) Find r'_{e} . (2 Point)
- c) Find the voltage gain, current gain and input impedance of the circuit. (6 Points)

Question #5: (5 Points)

a) A certain JFET datasheet gives $I_{DSS} = 10$ mA and $V_{GS(off)} = -8$ V. Determine the drain current for $V_{GS} = -5$ V.

(2 Points)

b) The transistor is to operate at: $V_{GSQ} =$ -5 V, $V_{DSQ} =$ 10V. Draw a suitable circuit to bias this transistor giving suitable resistances values, assuming that $V_{DD} = 24$ V (3 Points)

Question #6: (8 Points)

The class AB amplifier in Fig.6 is operating with a single power supply.

- (a) Assuming the input voltage is 10 V peakto-peak, determine the power delivered to the load resistor. (3 Points)
- (b) What is the maximum power that could be delivered to the load resistor? (3 Points)
- (c) Assume the power supply voltage is raised to 24 V. What is the new maximum power that could be delivered to the load resistor? (2 Points)

$$P_{LD} = 0.25 \mathrm{W}$$

 $P_{LD(max)} = 1.44 \text{ W}$ For $V_{CC}=24 \text{V}$

 V_{CC}

+15V

 Q_1

 O_2

*C*₃

 $\frac{R_L}{50\Omega} \stackrel{>}{\stackrel{>}{\sim}} V_{\alpha}$

 R_1

ξ1KΩ

 D_{I}

 D_2

 R_2 1K Ω

Fig.6

 C_1

<u>Question #7</u>: (8 Points)

The following parameters are obtained from a certain JFET datasheet: $I_{DSS} = 5$ mA and $V_{GS(off)} = -8$ V. Determine the values of I_D for each value of V_{GS} ranging from 0 V to -8 V in 1 V steps. Plot the transfer characteristic curve from these data.

V _{GS} /volts	0	-1	-2	-3	-4	-5	-6	-7	-8
I _D /mA	5	3.8	2.8	2	1.25	0.7	0.31	0.08	0

Question #8: (12 Points)

The E-MOSFET used in the common-source amplifier in Fig.8 has $I_{D(on)} = 200$ mA at $V_{GS} = 4$ V and $V_{GS(th)} = 2$ V.

- a) Determine the operating point V_{GSQ} , I_{DQ} and V_{DSQ} . (6 Points)
- b)Calculate the value of the transconductance g_m at the *Q*-point (2 Points)
- c) Determine the voltage gain and input impedance of the amplifier. (4 Points)

<u>Question #9</u>: (15 Points)

For the amplifier circuit of Fig.9, Determine the critical frequencies (f_{L1}, f_{L2}, f_{L3}) associated with the low-frequency response, the critical frequencies (f_{H1}, f_{H2}) associated with the high-frequency response.

 $\beta_{dc} = \beta_{ac} = 100, h_{ie} = 900\Omega, r_{e}' = 9\Omega, C_{be} = 25 \text{pF}, C_{bc} = 10 \text{pF}, R_{s} = 600\Omega, R_{I} = 68 \text{K}\Omega, R_{2} = 18 \text{K}\Omega, R_{E} = 500\Omega, R_{C} = 1.8 \text{K}\Omega, R_{L} = 1.8 \text{K}\Omega, C_{I} = 0.5 \mu\text{F}, C_{2} = 10 \mu\text{F}, C_{3} = 1 \mu\text{F}.$

$C = C_1 = 0.5 \mu\text{F}$ $R = (R_1 //R_2 //h_{ie}) + R_s = 1.446 \text{K}\Omega$	
$f_{L1} = \frac{10^6}{2\pi \times 0.5 \times 1446} = 220 \text{ Hz}$	$f_{L1} = 220 \text{ Hz}$
$C = C_2 = 10 \mu\text{F}$ $R = \{ [(R_1 //R_2 //R_s) + h_{ie})] / h_{fe} \} //R_E = 14.4 \Omega$	
$f_{L1} = \frac{10^6}{2\pi \times 10 \times 14.4} = 1112 \text{ Hz}$	$f_{L2} = 1112 \text{ Hz}$
$C = C_3 = 1 \ \mu F$ $R = (R_C + R_L) = 3.6 \ K\Omega$	
$f_{L1} = \frac{10^6}{2\pi \times 1 \times 3600} = 44 \text{ Hz}$	$f_{L3} = 44 \text{ Hz}$
$C_{in} = C_{be} + (A_v + 1) C_{bc} = 1035 \text{ pF}$ $R_{in} = (R_1 //R_2 //h_{fe} //R_s) = 351 \Omega$	
$f_{L1} = \frac{10^{12}}{2\pi \times 1035 \times 351} = 438 \text{ KHz}$	<i>f_{H1}</i> = 438 KHz
$C_{in} \cong C_{bc} = 10 \text{ pF}$ $R_{out} = (R_C //R_L) = 900 \Omega$	
$f_{L1} = \frac{10^{12}}{2\pi \times 10 \times 900} = 17.7 \text{ MHz}$	f_{H2}= 17.7 MHz