Assiut University - Faculty
of Commerce

Statistics \& Insurance Department
 Second Year
 English Program
 jubject: Introduction to Statistics
 Test pages\#: 11Pages

Choose the best answer from a, b, c, d

In one month, the total costs (to the nearest pound) of the calls made by 23 males mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

1) Thefourth-class lower boundary is
a) 20
b) 25
c) 6
d) 5
2) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The third-class midpoint equals
a) 10
b) 17.5
c) 15
d) 20
3) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The fourth-class lower boundary is
a) 20
b) 25
c) 6
d) 5
4) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The value of n is
a) 5
b) 10
c) 6
d) 23
5) The mean for this distribution is computed using the formula
a) $\frac{\sum m f}{n}$
b) $\frac{\sum m^{2} f}{n}$
c) $\frac{\sum m^{2} f-\frac{\left(\sum m f\right)^{2}}{n}}{n-1}$
d) $\frac{\sum m^{2} f-\frac{\left(\sum m f\right)^{2}}{n}}{n}$
6) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

$m f$ for the first class equal
a) 407.5
b) 7.5
c) 1
d) None of the above
7) In one month, the total costs (to the nearest pound) of the calls made by 23 males mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1
$m f=$					

a) 22
b) 407.5
c) 7.5
d) 7693.75
8) In one month, the total costs (to the nearest pound) of the calls made by 23 males mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1
$m^{2} f=$					

a) 407.5
b) 25
c) 7693.75
d) None of the above
9) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The mean value is
a) 21.55
b) -6379.38
c) 17.72
d) 5
10) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The cumulative third-class boundaries for this distribution is
a) 5 to less than 20
b) 15 to less than 20
c) 5 to less than 30
d) a and b
11) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The cumulative frequency for the second class is
a) 5
b) 23
c) 6
d) 16
12) In one month, the total costs (to the nearest pound) of the calls made by 23 males mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The median class is
a) 5 to less than 10
b) 10 to less than 15
c) 15 to less than 20
d) None of the above
13) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The median formula is given by
a) $l_{1}+\frac{l_{2}-l_{1}}{f}(m-c)$
b) $l_{1}+\frac{f_{1}-f_{0}}{\left(f_{1}-f_{0}\right)+\left(f_{1}-f_{2}\right)} \times i$
c) $l_{1}+\frac{l_{2}+l_{1}}{f}(m-c)$
d) $l_{1}-\frac{f_{1}-f_{0}}{\left(f_{1}-f_{0}\right)+\left(f_{1}-f_{2}\right)} \times i$
14) In one month, the total costs (to the nearest pound) of the calls made by 23 males
mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The median value is
a) 17.5
b) 18
c) 17.78
d) 30
15) In one month, the total costs (to the nearest pound) of the calls made by 23 males mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

Q_{I} value is
a) 15
b) 10
c) 12.5
d) None of the above
16) In one month, the total costs (to the nearest pound) of the calls made by 23 males mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The distribution is
a) symmetric
b) uniform
c) asymmetrical Distribution
d) None of the above
17) In one month, the total costs (to the nearest pound) of the calls made by 23 males mobile phone owners were:

Cost	5 to less than 10	10 to less than 15	15 to less than 20	20 to less than 25	25 to less than 30
Frequency	1	5	10	6	1

The mode class boundaries is
a) 15 to less than 20
b) 25 to less than 30
c) 10
d) a and c
18) During a particular summer month, the eight salespeople in a heating and airconditioning firm sold the following number of central air-conditioning units: $8,11,5,14$, $8,11,16,11$. Considering this month as the statistical population of interest

The mean formula for these data is given by
a) $\frac{\sum x}{N}$
b) $\frac{\sum x}{N-1}$
c) $\frac{\sum m f}{N}$
d) $\frac{\sum m^{2} f}{N}$
19) During a particular summer month, the eight salespeople in a heating and airconditioning firm sold the following number of central air-conditioning units: $8,11,5,14$, $8,11,16,11$. Considering this month as the statistical population of interest

The median for this data is
a) 10.5
b) 11
c) 84
d) 8
20) During a particular summer month, the eight salespeople in a heating and airconditioning firm sold the following number of central air-conditioning units: $8,11,5,14$, $8,11,16,11$. Considering this month as the statistical population of interest

The mode for this data set is
a) 11
b) 13.4
c) 3.7
d) 10.5
21) $\quad \sum(x-\mu)$ equals
a) 0
b) -0.5
c) minimum
d) the range
22) During a particular summer month, the eight salespeople in a heating and airconditioning firm sold the following number of central air-conditioning units: $8,11,5,14$, $8,11,16,11$. Considering this month as the statistical population of interest
the range is
a) 5
b) 16
c) 0
d) 11
23) During a particular summer month, the eight salespeople in a heating and airconditioning firm sold the following number of central air-conditioning units: $8,11,5,14$, $8,11,16,11$. Considering this month as the statistical population of interest
$\sum x^{2}$ equals
a) 84
b) 13.4
c) 968
d) 11
24) During a particular summer month, the eight salespeople in a heating and airconditioning firm sold the following number of central air-conditioning units: $8,11,5,14$, $8,11,16,11$. Considering this month as the statistical population of interest

The third quartile is
a) 10.75
b) 8
c) 12.5
d) 16
25) The sum of the squared deviations of the individual items from the arithmetic mean is always
a) maximum
b) minimum
c) zero
d) arbitrary value
26) it is influenced by the extreme values
a) The mode
b) The geometric mean
c) The mean
d) The mode
27) A survey that includes every member of the population is called a
a) sample survey
b) census
c) prediction
d) case study
28) A sample drawn in such a way that each element of the population has a chance of being selected is called a
a) simple random sample
b) random sample
c) representative sample
d) sample survey
29) If the value of Correlation Coefficient $=+1.2$ thisindicates
a) some mistake in our calculations
b) very high degree of positive correlation
c) positive correlation
d) perfect positive correlation
30) in the case of open-ended distributions, it is possible to compute the
a) Median
b) Mean
c) Range
d) All of the above
31) If the mean > median > mode, then the distribution is
a) symmetrical
b) uniform
c) skewed to the right
d) skewed to the left
32) In the case of the qualitative data where the items are not counted or measured but are scored or ranked, it is the most appropriate measure of central tendency.
a) The mode
b) The mean
c) The median
d) The geometric mean
33) It is a suitable measure while comparing the dispersion of two or more distributions
a) The coefficient of variation
b) The standard deviation
c) The range
d) The standardized value
34) The square of Pearsonian correlation coefficient is known as
a) The regression coefficient
b) coefficient of determination
c) Spearman Correlation
d) None of the above
35) The coefficient of skewness for the sales is given by
a) $\frac{\text { mean-mode }}{S D}$
b) $\frac{3(\text { mean-median })}{S D}$
c) $\frac{Q_{3}-2 Q_{2}+Q 1}{Q_{3}-Q_{1}}$
d) all of the above
36) Consider the following shape

This shape is called
a) histogram
b) box-whisker Plot
c) stem and leaf
d) polygon

The median is given by
a) 250
b) 265
c) 259
d) 290
38) Consider the following shape

The maximum value in the data set is
a) 290
b) 345
c) 265
d) Can't determine it from the graph
39) Consider the following shape

Q_{1} value can be
a) 250
b) 265
c) 290
d) 345
40) Consider the following shape

The number of outliers in this data set is
a) 0
b) 2
c) 1
d) 3
41) Consider the following shape

A dispersion value can be
a) 16
b) 65
c) 50
d) None of the above
42) Consider the following shape

These data are
a) right skewed
b) left skewed
c) uniform
d) symmetric

To study the relation between X as independent variable and Y as dependent variable we got the following result,
$\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797$ and $n=12$
Use the data for (Q44 to Q 55)
43) The linear relationship between X and Y can be described using
a) $X=a+b Y$
b) $Y=a+b X^{2}$
c) $X=e^{a+b y}$
d) a and c
44) $\quad S S_{x y}$ is given by
a) $\sum x y-\frac{\sum x \sum y}{n}$
b) $\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}$
c) $\sum y^{2}-\frac{\left(\sum x\right)^{2}}{n}$
d) $\sum x^{2}-\frac{\left(\sum y\right)^{2}}{n}$
45) To study the relation between X as independent variable and Y as dependent variable we got the following result,

$$
\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797 \text { and } n=12
$$

$S S_{x x}$ value equals
a) -0.89
b) -11.42
c) 0.89
d) None of the above
46) To study the relation between X as independent variable and Y as dependent variable we got the following result,

$$
\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797 \text { and } n=12
$$

The suitable correlation coefficient to be computed is
a) Pearson
b) Spearman
c) Chebyshev's
d) Bowley
47) To study the relation between X as independent variable and Y as dependent variable we got the following result,

$$
\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797 \text { and } n=12
$$

The correlation coefficient value is
a) -0.88
b) 0.88
c) -1
d) None of the above
48) To study the relation between X as independent variable and Y as dependent variable we got the following result,

$$
\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797 \text { and } n=12
$$

The relation between X and Y is
a) negative
b) positive
c) perfect
d) a and b
49) In the regression line, b can be found from the formula
a) $\bar{Y}-a \bar{X}$
b) $\bar{X}-a \bar{Y}$
c) $\frac{S S_{x y}}{S S_{y y}}$
d) $\frac{S S_{x y}}{S S_{x x}}$
50) To study the relation between X as independent variable and Y as dependent variable we got the following result,

$$
\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797 \text { and } n=12
$$

The value of b is
a) -99.99
b) -0.88
c) 99.99
d) None of the above
51) To study the relation between X as independent variable and Y as dependent variable we got the following result,

$$
\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797 \text { and } n=12
$$

The determination coefficient value is
a) -0.88
b) -99.99
c) 0.78
d) None of the above
52) To study the relation between X as independent variable and Y as dependent variable
we got the following result,

$$
\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797 \text { and } n=12
$$

The standard deviation of errors value is
a) 0.53
b) 1.57
c) 3.19
d) None of the above
53) To study the relation between X as independent variable and Y as dependent variable we got the following result,

$$
\sum x=53, \sum x y=5081, \sum x^{2}=247, \sum y^{2}=110797 \text { and } n=12
$$

The expected value of Y when $\mathrm{X}=5$
a) 5
b) 95.56
c) 104.4
d) None of the above
54) If all points cluster in an ascending line this would suggest what?
a) There would be a weak positive relationship
b) There would be a strong positive relationship
c) There would be a strong negative relationship
d) There would be a non-linear relationship
55) In a questionnaire, respondents are asked to mark their marital status. Marital status is an example of the
a) ordinal scale
b) nominal scale
c) ratio scale
d) interval scale
56) The mean value for X is 53.2, the mean value of Y is 27.9 , the regression coefficient of Y on X equals -1.5 and the regression coefficient of X on Y is -0.2

When $\mathrm{X}=60$ the value of Y is
a) 12
b) 17.7
c) Cannot determine
d) None of the above
57) The mean value for X is 53.2, the mean value of Y is 27.9, the regression coefficient of Y on X equals -1.5 and the regression coefficient of X on Y is -0.2

The coefficient of correlation between X and Y is
a) 0.55
b) -0.55
c) 0.3
d) -0.3

